B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树。

B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计。

B树相对于红黑树的区别

在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况。为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,B树可以有多个子女,从几十到上千,可以降低树的高度。

B树和B+树的区别

B树所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息。

B+树所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接,所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B 树的非终节点也包含需要查找的有效信息)

为什么说B+比B树更适合实际应用中操作系统的文件索引和数据库索引?

1) B+的磁盘读写代价更低

B+的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

2) B+tree的查询效率更加稳定

由于非叶子结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

数据库索引采用B+树的主要原因是 B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低)

如图所示,区别有以下两点:

1. B+树中只有叶子节点会带有指向记录的指针(ROWID),而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中。

2. B+树中所有叶子节点都是通过指针连接在一起,而B树不会。

B+树的优点:

1. 非叶子节点不会带上指向记录的指针(ROWID),这样,一个块中可以容纳更多的索引项,一是可以降低树的高度。二是一个内部节点可以定位更多的叶子节点。

2. 叶子节点之间通过指针来连接,范围扫描将十分简单,而对于B树来说,则需要在叶子节点和内部节点不停的往返移动。

B树的优点:

对于在内部节点的数据,可直接得到,不必根据叶子节点来定位。

时间: 2024-10-14 20:09:12

B树、B+树、红黑树、AVL树比较的相关文章

伸展树&红黑树&AVL树总结

最近学习了这3种树,感觉其实有很多相同的地方吧,首先是最重要的旋转操作,3种树都有 AvlTree left_left(AvlTree k1) { //if(height(k1->left)-height(k1->right)<2)return k1; AvlTree k2 = k1->left; k1->left = k2->right; k2->right = k1; k1->Height = max(height(k1->left),height

3、如何判断一棵树是否是红黑树?

一.红黑树的定义 红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色.除了二叉查找树强制的一般要求以外,对于任何有效的红黑树有如下的额外要求: 性质1. 节点是红色或黑色. 性质2. 根节点是黑色. 性质3 每个叶节点(NIL节点,空节点)是黑色的. 性质4 每个红色节点的两个子节点都是黑色.(从每个叶子到根的所有路径上不能有两个连续的红色节点) 性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点. 二.如何判断是否是红黑树(假设正数代表黑色,负数代表红色) 1.中序遍

从2-3-4树模型到红黑树实现

目录 从2-3-4树模型到红黑树实现 前言 2-3-4树 查找 插入 树的生长 删除 左倾红黑树 查找 插入 删除 总结 参考文献 从2-3-4树模型到红黑树实现 前言 红黑树,是一个高效的二叉查找树.其定义特性保证了树的路径长度在黑色节点上完美平衡,使得其查找效率接近于完美平衡的二叉树. 但是红黑树的实现逻辑很复杂,各种旋转,颜色变化,直接针对其分析,大多数都是死记硬背各种例子,不太容易有个直观的理解.实际上,红黑树是实现手段,是其他概念模型为了方便在二叉树上实现进而定义的节点颜色这个信息.如

浅谈AVL树,红黑树,B树,B+树原理及应用

背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为

红黑树/B+树/AVL树

RB Tree 红黑树  :http://blog.csdn.net/very_2/article/details/5722682 AVL Tree    :http://blog.csdn.net/collonn/article/details/20128205 B[+/-] Tree  :http://hxraid.iteye.com/blog/611105 几种Tree 总结对比 :http://www.iteye.com/topic/614070 [nginx模块开发与架构解析]

霍夫曼树 二三树 红黑树 B树 B+树

霍夫曼树: 特点:带权路径长度最短,∑(每个节点的权重)*(每个节点的层数) 生成:每次合并权值最小的两个节点(子树)建立二叉树,将合并后的子树作为新节点,权值为节点(子树)权值之和 二三树: 特点:平衡查找树,每个叶子节点为空且层数相同,查找时间复杂度O(lgn) 生成:2节点包含一个key和两个子节点(left->key<key<right->key),3节点包含两个key和三个子节点(left->key<key1<middle->key<key2

树-二叉查找树、红黑树

二叉查找树的性质: 如果节点的左子树不空,则左子树上所有结点的值均小于等于它的根结点的值: 如果节点的右子树不空,则右子树上所有结点的值均大于等于它的根结点的值: 任意节点的左.右子树也分别为二叉查找树: 二叉查找树查找某个结点时,是二分查找的思想,查找所需的最大次数等同于二叉树的高度. 缺陷:二叉查找树多次插入新节点时,有可能导致二叉查找树的不平衡,变成线性结构. 二叉查找树的优化=> 红黑树 1.节点是红色或黑色. 2.根节点是黑色. 3.所有叶子都是黑色(叶子是NIL节点). 4.每个红色

从二叉树到2-3-4树再到红黑树

直接进入正题: 一.如何从数组生成一个二叉树 假设数组为:{ 30, 13, 7, 43, 23, 12, 9, 33, 42, 21, 18, 6, 3, 50 },我们不对数组排序,直接生成二叉树. 创建流程: 1.将第一数作为根节点: 2.插入13,13小于30,放在30的左边子节点. 3.插入7,7小于30,7小于13,放在13的左边子节点. 4.插入43,43大于30,放在30的右边子节点. 5.放入23,23小于30,23大于13,放入13的右边子节点. 6.放入12,12小于30,

AVL树的JAVA实现及AVL树的旋转算法

1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. 2,为什么需要AVL树呢?在二叉查找树中最坏情况下查找某个元素的时间复杂度为O(n),而AVL树能保证查找操作的时间复杂度总为O(logn). 3,AVL树的JAVA代码实现: AVLTree  继承 BinarySearchTree 并改写 添加节点的add方法,在add方法中判断插入元素后是否

数据结构之树篇3——平衡二叉树(AVL树)

引入 上一篇写了二叉排序树,构建一个二叉排序树,如果构建序列是完全有序的,则会出现这样的情况: 显然这种情况会使得二叉搜索树退化成链表.当出现这样的情况,二叉排序树的查找也就退化成了线性查找,所以我们需要合理调整二叉排序树的形态,使得树上的每个结点都尽量有两个子结点,这样整个二叉树的高度就会大约在\(log(n)\) 左右,其中 \(n\) 为结点个数. 基本性质 ? AVL树也称为平衡二叉树,是一种自平衡的二叉排序树,本质上仍然是一颗二叉排序树,只是增加了"平衡"的要求,平衡是指,对