浅浅地聊一下矩阵与线性映射及矩阵的特征值与特征向量

都说矩阵其实就是线性映射,你明白不?反正一开始我是不明白的;

线性映射用矩阵表示:(很好明白的)

有两个线性空间,分别为V1与V2, V1的一组基表示为,V2的一组基表示为;(注意哦,维度可以不一样啊,反正就是线性空间啊),

1, 现在呢,有一个从V1到V2的映射F, 它可以把V1中的一组基都映射到线性空间V2中去,所以有:

用矩阵可以表示为:

2,现在我们把在V1中有一个向量A,经过映射F变为了向量B,用公式表示为:

                               

所以呢,坐标的映射表示为:

由上面的过程,我们看到了:可以把一个映射F用矩阵 表示;

由空间X映射到空间Y时,向量的坐标转换表示为:

所以呢,我们可以把矩阵看作是线性变换或线性映射;

(补充一下什么是线性映射?满足下面两个条件:   )

矩阵的特征值与特征向量:

应该说是线性映射的特征值与特征向量,应该映射可以用矩阵表示,所以也可以说是矩阵的特征值与特征向量;

1,用线性映射表示:

在空间V中的一个线性映射F,若在空间V的存在一个向量,满足下面:

      则向量称为映射的特征向量,为映射的特征值;

2,用矩阵表示:

把上面的公式改改,把矩阵A表示映射,用坐标  来表示向量,可以得到:

因为向量映射后结果为,所以,映射前后的线性空间是没有变化的,所以映射前后可以用同一组基表示,所以有:

最后得到:

看看特征向量到底是什么?

对于一个映射,特征向量才是本质有用的,特征值的作用不大。一个特征值对应了一个特征向量族(因为可以乘以一个系数,可以它的个数是无穷的),而一个特征向量只能对应一个特征值;

不严格地说:特征向量可以理解为,在一个映射F过程中,那些原线性空间中的在映射过程中方向不变(正负没事)只是scale变化的向量;

更严格地说,应该是在映射过程中,映射前后所处的线性空间不变的那些向量,因为映射前后的结果可以用同一组基表示;

时间: 2024-11-10 13:35:00

浅浅地聊一下矩阵与线性映射及矩阵的特征值与特征向量的相关文章

特征值和特征向量的几何意义、计算及其性质(一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已)

  对于任意一个矩阵,不同特征值对应的特征向量线性无关. 对于实对称矩阵或埃尔米特矩阵来说,不同特征值对应的特征向量必定正交(相互垂直).   一.特征值和特征向量的几何意义 特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量.因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量. 那么变换的效果是什么呢?这当然与方阵的构造有密切的关系,比如可以取适当的二维方阵,使得

矩阵特征分解介绍及雅克比 Jacobi 方法实现特征值和特征向量的求解 C++/OpenCV/Eigen

对角矩阵(diagonal matrix):只在主对角线上含有非零元素,其它位置都是零,对角线上的元素可以为0或其它值.形式上,矩阵D是对角矩阵,当且仅当对于所有的i≠j, Di,j= 0. 单位矩阵就是对角矩阵,对角元素全部是1.我们用diag(v)表示一个对角元素由向量v中元素给定的对角方阵.对角矩阵受到关注的部分原因是对角矩阵的乘法计算很高效.计算乘法diag(v)x,我们只需要将x中的每个元素xi放大vi倍.换言之,diag(v)x = v⊙x.计算对角方阵的逆矩阵也很高效.对角方阵的逆

线性代数精华——矩阵的特征值与特征向量

今天和大家聊一个非常重要,在机器学习领域也广泛使用的一个概念--矩阵的特征值与特征向量. 我们先来看它的定义,定义本身很简单,假设我们有一个n阶的矩阵A以及一个实数\(\lambda\),使得我们可以找到一个非零向量x,满足: \[Ax=\lambda x\] 如果能够找到的话,我们就称\(\lambda\)是矩阵A的特征值,非零向量x是矩阵A的特征向量. 几何意义 光从上面的式子其实我们很难看出来什么,但是我们可以结合矩阵变换的几何意义,就会明朗很多. 我们都知道,对于一个n维的向量x来说,如

利用QR算法求解矩阵的特征值和特征向量

利用QR算法求解矩阵的特征值和特征向量 为了求解一般矩阵(不是那种幼稚到shi的2 x 2矩阵)的特征值. 根据定义的话,很可能需要求解高阶方程... 这明显是个坑...高阶方程你肿么破... 折腾了好久 1.我要求特征值和特征向量. 2.找到一种算法QR分解矩阵求解特征值 3.QR矩阵分解需要Gram-schimidt正交化分解 有一种很明显的感觉,往往在现在很难有 很系统 很深入 的学习某一个学科的某一门知识. 往往学的时候"靠,学这东西有什么用""学了这么久,也不知道怎么用,不想学" 到后

矩阵的特征值和特征向量的雅克比算法C/C++实现

矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是

【矩阵与行列式】矩阵和行列式学习笔记

开始从ToDoList里挑东西来杀. 感觉矩阵和行列式这两个跟很多东西都有关而且接触最少 所以先从它们开始补>w< P.S.看了很多资料,他们对矩阵和行列式这些东西的介绍都很丧病-我会尽量用通俗的语言来写我的笔记= =如果您不喜欢这种风格QAQ那我也没办法了请隔壁看别人的吧 ---------线割分是我>w<--------------– 什么是矩阵? 矩阵是n*m个数在n*m这个二维区域内的一个排列,是一个横纵排列的二维数字表格. 也就是说,矩阵只是一些数的一种存储形式. 通常我

线性代数之矩阵的特征值与特征向量

数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变.该向量在此变换下缩放的比例称为其特征值(本征值). 一个线性变换通常可以由其特征值和特征向量完全描述.特征空间是相同特征值的特征向量的集合.“特征”一词来自德语的eigen.1904年希尔伯特首先 在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词.eigen一词可翻译为”自身的”.“特定于……的”.“有特征的”.或者“个体 的”.这显示了特征值对于定义特定的线性变换有多重要. 线性变换的特征向量是指

HDU 1575 &amp;&amp; 1757 矩阵快速幂&amp;&amp;构造矩阵入门

HDU 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2912    Accepted Submission(s): 2167 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据.每组

线性代数 - 05 矩阵的特征值与特征向量

线性代数 - 05 矩阵的特征值与特征向量 一.特征值与特征向量 二.矩阵的相似与矩阵的对角化 三.实对称矩阵的对角化 1.向量的内积与正交矩阵 2.实对称矩阵的特征值与特征向量 线性代数 - 05 矩阵的特征值与特征向量,码迷,mamicode.com