[bzoj1007][HNOI2008][水平可见直线]

Description

  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

  第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

Solution

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 50010
#define Eps 1e-18

using namespace std;

struct Liyn{
  int k, b, pos;

  void Push(int i) {scanf("%d%d", &k, &b); pos = i;}

  bool operator == (const Liyn &a)const {return k == a.k;}

  bool operator < (const Liyn &a)const {return k < a.k || (k == a.k && b > a.b);}

  double Cmp(const Liyn &a) {return double(a.b - b) / double(k - a.k);}
}L[MAXN], _pb[MAXN];

int n, top, ans[MAXN];

int main(){
  scanf("%d", &n);
  for(int i = 0; i < n; i++)
    L[i].Push(i);
  sort(L, L + n);
  n = unique(L, L + n) - L;
  for(int i = 0; i < n; i++){
    while(top > 1 && _pb[top - 1].Cmp(_pb[top - 2]) > L[i].Cmp(_pb[top - 1]) - Eps)top--;
    _pb[top++] = L[i];
  }
  for(int i = 0; i < top; i++)
    ans[i] = _pb[i].pos;
  sort(ans, ans + top);
  for(int i = 0; i < top; i++)
    printf("%d ", ans[i] + 1);
  return 0;
}
时间: 2024-10-07 20:14:04

[bzoj1007][HNOI2008][水平可见直线]的相关文章

bzoj1007: [HNOI2008]水平可见直线(单调栈)

1007: [HNOI2008]水平可见直线 题目:传送门 题解: 蒟蒻在bzoj上做的第一道计算几何 其实这道题并不难...(所以我A了) 仔细想想不难发现,其实我们只需要维护一个下凸的图形... 只有在这个图形上的直线才不会被覆盖,也就是可以被上帝直线看到的孩子 为什么呢...自己画个图模拟吧. 那么具体的做法我们就要采用单调栈啦! 把给出的直线按照斜率从小到大排序(如果斜率相同的话就按照b来排) 然后一个一个放入我们强大的单调栈中,在加入的同时我们当然还要进行维护: 如果栈顶的直线与新加直

[BZOJ1007] [HNOI2008] 水平可见直线 (凸包)

Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从

[BZOJ1007][HNOI2008]水平可见直线 计算几何

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以发现题目求的就是一个下凸包,把直线按斜率排序,再来维护凸包就好了.可以发现下凸包上的拐点横坐标单增.同时注意处理斜率相同的直线的情况. 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 const double eps=1e-14;

[日常摸鱼]bzoj1007[HNOI2008]水平可见直线-半平面交(对偶转凸包)

不会写半平面交-然后发现可以转成对偶凸包问题 具体见这里:http://trinkle.blog.uoj.ac/blog/235 相关的原理我好像还是不太懂-orz #include<cstdio> #include<algorithm> const int N=50005; inline int read() { int s=0,f=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}

【BZOJ1007】[HNOI2008]水平可见直线 半平面交

[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000

BZOJ 1007: [HNOI2008]水平可见直线 几何

按斜率排序,斜率线相同的直线取截距最大的 一条直线能够被看到的条件是,与比它斜率小的交点在比它斜率大的交点的左侧 1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 4234  Solved: 1558 [Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则

1007: [HNOI2008]水平可见直线[维护下凸壳]

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给

BZOJ 1007: [HNOI2008]水平可见直线( 计算几何 )

按A从小到大排序然后用栈解决. -------------------------------------------------------------------- #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 50009; struct L { int A, B, id; inline void Read(int p) { scanf("%d%d"

bzoj 1007 [HNOI2008]水平可见直线(单调栈)

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L