Biorhythms(中国剩余定理)

Biorhythms

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 127339   Accepted: 40342

Description

Some people believe that there are three cycles in a person‘s life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier.  Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak.

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form: 
Case 1: the next triple peak occurs in 1234 days. 
Use the plural form ``days‘‘ even if the answer is 1.

Sample Input

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.题解:

Description

人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集中。因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天。对于每个人,我们想知道何时三个高峰落在同一天。对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间)。你的任务是给定一个从当年第一天开始数的天数,输出从给定时间开始(不包括给定时间)下一次三个高峰落在同一天的时间(距给定时间的天数)。例如:给定时间为10,下次出现三个高峰同天的时间是12,则输出2(注意这里不是3)。

Input

输入四个整数:p, e, i和d。 p, e, i分别表示体力、情感和智力高峰出现的时间(时间从当年的第一天开始计算)。d 是给定的时间,可能小于p, e, 或 i。 所有给定时间是非负的并且小于365, 所求的时间小于21252。 
当p = e = i = d = -1时,输入数据结束。

Output

从给定时间起,下一次三个高峰同天的时间(距离给定时间的天数)。 
采用以下格式:  Case 1: the next triple peak occurs in 1234 days. 
注意:即使结果是1天,也使用复数形式“days”。

题解:

现设 num 是下一个相同日子距离开始的天数

p,e,i,d 如题中所设!

那么就可以得到三个式子:( num + d ) % 23 == p; ( num + d ) % 28 == e; ( num + d ) % 33 == i;

p,e,i,d 是我们输入的,那么我们需要求出num即可,为了方便,我们将num+d暂时作为一个整体!令x = num + d;

即:x % 23 == p; x % 28 == e; x % 33 == i;求x

怎么办?这就涉及到所谓的 “ 中国剩余定理 ”( 概念自己google,很easy )

《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。

--------这个就是传说中的“中国剩余定理”。 其实题目的意思就是,n % 3 = 2, n % 5 = 3, n % 7 = 2; 问n是多少?

那么他是怎么解决的呢?

看下面:

题目中涉及 3, 5,7三个互质的数、

令:5 * 7 * a % 3 = 1;  --------------> a = 2; 即5 * 7 * 2 = 70;

3 * 7 * b % 5 = 1;  --------------> b = 1; 即3 * 7 * 1 = 21;

3 * 5 * c % 7 = 1;  --------------> c  = 1; 即3 * 5 * 1 = 15;

为什么要使余数为1:是为了要求余数2的话,只要乘以2就可以,要求余数为3的话,只要乘以3就可以!

( 因为题目想要n % 3 =2, n % 5 =3, n % 7 =2; )

那么:要使得n % 3 = 2,那么( 5 * 7 * 2 )*2  % 3 = 2;( 因为5 * 7 * 2 % 3 = 1 )

同理: 要使得n % 5 = 3,那么( 3 * 7 * 1 )*3  % 5 = 3;( 因为3 * 7 * 1 % 5 = 1 )

同理:要使得n % 7 = 2,那么( 3 * 5 * 1 )* 2  % 7 = 2;( 因为3 * 5 * 1 % 7 = 1 )

那么现在将( 5 * 7 * 2 )* 2和( 3 * 7 * 1 )* 3和( 3 * 5 * 1 )* 2相加会怎么样呢?我们知道

( 5 * 7 * 2 )* 2可以被5和7整除,但是%3等于2

( 3 * 7 * 1 )* 3可以被3和7整除,但是%5等于3

( 3 * 5 * 1 )* 2可以被3和5整除,但是%7等于2

那么即使相加后,%3, 5, 7的情况也还是一样的!

那么就得到一个我们暂时需要的数( 5 * 7 * 2 )* 2 +( 3 * 7 * 1 )* 3 +( 3 * 5 * 1 )* 2 = 233

但不是最小的!所有我们还要 233 % ( 3 * 5 * 7 ) == 23  得解!

/******************************************************************************************************************************************************/

// 以上就是算法解析,貌似讲的不是很清晰,哎,大家见谅咯~

现在看看此题:x % 23 == p; x % 28 == e; x % 33 == i;求x

按照以上算法:

使 33 * 28 * a % 23 = 1,得a = 6; 33 * 28 * 6 = 5544;

使23 * 33 * b % 28 = 1, 得b = 19;23 * 33 * 19 = 14421; 
使23 * 28 * c % 33 = 1, 得c = 2;  23 * 28 * 2 = 1288。

那么x  =  5544 * p + 14421 * e + 1288 * i

那么x-d即相差的时间天数!

因为有范围限制,那么(x-d) %= 21252;且如果此时<=0,那么(x-d)  += 21252   ,以上都只是为了保证在范围内而已~

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
bool js(int a, int b, int c, int d){
    if(a == b && b == c && c == d && a == -1)
        return false;
    return true;
}
int main(){
    int p, e, i, d, kase = 0;
    while(~scanf("%d%d%d%d", &p, &e, &i, &d), js(p, e, i, d)){
        int a, b, c;
        for(a = 1; ; a++){
            if(33*28*a % 23 == 1){
                a = 33*28*a;
                break;
            }
        }
        for(b = 1; ; b++){
            if(33*23*b % 28 == 1){
                b = 33*23*b;
                break;
            }
        }
        for(c = 1; ; c++){
            if(23*28*c % 33 == 1){
                c = 23*28*c;
                break;
            }
        }
    //    printf("%d %d %d\n", a, b, c);
        int sum = a*p + b*e + c*i;
        int x = (sum - d) % 21252;
        if(x <= 0)x += 21252;
        printf("Case %d: the next triple peak occurs in %d days.\n", ++kase, x);
    }
    return 0;
}
时间: 2024-10-11 22:29:29

Biorhythms(中国剩余定理)的相关文章

PKU POJ 1006 Biorhythms (中国剩余定理)

中国剩余定理 x = ai (mod mi)  ai和mi是一组数,mi两两互质,求x 令Mi = m1*m2*~mk     其中,mi不包含在内. 因为mi两两互质,所以存在x和y, st   Mi*xi + mi*yi = 1 令ei = Mi*xi ,则有: 则e0a0 + e1a1 + e2a2+ - +en-1*an-1是方程一个解 因为n%3=2,n%5=3,n%7=2且3,5,7互质       使5×7被3除余1,用35×2=70:        使3×7被5除余1,用21×1

uva 756 - Biorhythms(中国剩余定理)

题目链接:uva 756 - Biorhythms 题目大意:三个周期,23,28,33,输入为分别为在新一年中(三个周期均从0开始),出现周期中峰值的一天,以及当前的日子,问说需要经过多少天,才能使得三个峰值的在同一天. 解题思路:裸的中国剩余定理. #include <cstdio> #include <cstring> typedef long long ll; const int maxn = 5; const ll m[maxn] = {23,28,33}; ll M,

POJ1006——Biorhythms(中国剩余定理)

Biorhythms Description人生来就有三个生理周期,分别为体力.感情和智力周期,它们的周期长度为23天.28天和33天.每一个周期中有一天是高峰.在高峰这天,人会在相应的方面表现出色.例如,智力周期的高峰,人会思维敏捷,精力容易高度集中.因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天.对于每个人,我们想知道何时三个高峰落在同一天.对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间).你的任务是给定一个从当年第一天开始数的天

poj 1006 Biorhythms (中国剩余定理学习)

Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 113517   Accepted: 35597 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,

POJ - 1006 Biorhythms (中国剩余定理)

Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respec

poj 1006:Biorhythms(水题,经典题,中国剩余定理)

Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 110991   Accepted: 34541 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,

POJ 1006 Biorhythms (数论-中国剩余定理)

Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 111285   Accepted: 34638 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,

【中国剩余定理】POJ 1006 &amp; HDU 1370 Biorhythms

题目链接: http://poj.org/problem?id=1006 http://acm.hdu.edu.cn/showproblem.php?pid=1370 题目大意: (X+d)%23=a1,(X+d)%28=a2,(X+d)%33=a3,给定a1,a2,a3,d,求最小的X. 题目思路: [中国剩余定理] 23,28,33互素,可以套中国剩余定理. 也可以直接手算逆元. 33×28×a模23的逆元为8,则33×28×8=5544: 23×33×b模28的逆元为19,则23×33×1

中国剩余定理 POJ 1006 Biorhythms

题目传送门 题意:POJ有中文题面 分析:其实就是求一次同余方程组:(n+d)=p(%23), (n+d)=e(%28), (n+d)=i(%33),套用中国剩余定理模板 代码: /************************************************ * Author :Running_Time * Created Time :2015/9/15 星期二 16:53:01 * File Name :POJ_1006.cpp **********************