Co-prime

Co-prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two
integers are said to be co-prime or relatively prime if they have no
common positive divisors other than 1 or, equivalently, if their
greatest common divisor is 1. The number 1 is relatively prime to every
integer.

Input

The
first line on input contains T (0 < T <= 100) the number of test
cases, each of the next T lines contains three integers A, B, N where (1
<= A <= B <= 1015) and (1 <=N <= 109).

Output

For
each test case, print the number of integers between A and B inclusive
which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

分析:求出n的素因子,然后容斥求解出不互质的个数,剩下的就是互质的个数;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+10;
using namespace std;
inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
inline void umax(ll &p,ll q){if(p<q)p=q;}
inline void umin(ll &p,ll q){if(p>q)p=q;}
inline ll read()
{
    ll x=0;int f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
int n,m,k,t,cnt,fac[maxn],cas;
ll x,y;
void init(int x)
{
    cnt=0;
    if(x%2==0){
        fac[++cnt]=2;
        while(x%2==0)x/=2;
    }
    for(int i=3;(ll)i*i<=x;i+=2)
    {
        if(x%i==0)
        {
            fac[++cnt]=i;
            while(x%i==0)x/=i;
        }
    }
    if(x>1)fac[++cnt]=x;
}
ll gao(ll x)
{
    ll ret=0;
    for(int i=1;i<(1<<cnt);i++)
    {
        ll num=0,now=1;
        for(int j=0;j<cnt;j++)
        {
            if(i&(1<<j))
            {
                ++num;
                now*=fac[j+1];
            }
        }
        if(num&1)ret+=x/now;
        else ret-=x/now;
    }
    return x-ret;
}
int main()
{
    int i,j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld%d",&x,&y,&n);
        init(n);
        printf("Case #%d: %lld\n",++cas,gao(y)-gao(x-1));
    }
    return 0;
}
时间: 2025-01-01 00:56:42

Co-prime的相关文章

Sicily 1444: Prime Path(BFS)

题意为给出两个四位素数A.B,每次只能对A的某一位数字进行修改,使它成为另一个四位的素数,问最少经过多少操作,能使A变到B.可以直接进行BFS搜索 1 #include<bits/stdc++.h> 2 using namespace std; 3 4 bool isPrime(int n){//素数判断 5 if(n == 2 || n == 3) return true; 6 else{ 7 int k = sqrt(n) + 1; 8 for(int i = 2; i < k; i

HDU 1389 继续畅通工程【最小生成树,Prime算法+Kruskal算法】

继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 21871    Accepted Submission(s): 9356 Problem Description 省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计表,表中列

HDU 1016 Prime Ring Problem(DFS)

题目链接 Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always

[CareerCup] 7.7 The Number with Only Prime Factors 只有质数因子的数字

7.7 Design an algorithm to find the kth number such that the only prime factors are 3,5, and 7. 这道题跟之前LeetCode的那道Ugly Number II 丑陋数之二基本没有啥区别,具体讲解可参见那篇,代码如下: class Solution { public: int getKthMagicNumber(int k) { vector<int> res(1, 1); int i3 = 0, i

UVA 10200 Prime Time 暴力水题

一个简单的暴力水题,只是输出方式让人无语... #include <stdio.h> #include <string.h> int prime(int n) { int i; for(i=2;i*i<=n;i++) { if((n%i)==0) return 0; } return 1; } int main() { int num[10010]; int i; int a,b; int sum; memset(num,0,sizeof(num)); for(i=0;i&l

POJ 2689 Prime Distance(素数区间筛法--经典题)

大致题意:给定[L,R]区间,找出区间内的每个素数 数据范围 : 1<=L< R<=2,147,483,647) R-L <=1,000,000. R的数值太大,所以不能直接筛[0,R]的,要空间和时间优化,用到区间筛法,另外注意不能用int,因为R和L都是满int的,中间有很多细节处理会爆int的,还要注意1不是素数,所以在区间筛中要特判一下,是个易错的地方 //1160K 16MS C++ 1539B #include<cstdio> #include<ios

hdu 1016 Prime Ring Problem DFS解法 纪念我在杭电的第一百题

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 29577    Accepted Submission(s): 13188 Problem Description A ring is compose of n circles as shown in diagram. Put natural num

07:清泉-改(prime+堆)

时间限制:  10000ms 单个测试点时间限制:  1000ms 内存限制:  512000kB 描述 华北电力大学可以抽象为一张有n个点m条边的无向图. 现在所有的边都断了. 修复每条边都有个不同的代价w_i. 求让所有点都能互相到达的最小代价和. 输入 第一行两个正整数 n, m 表示顶点数和边数 接下来m行每行三个正整数 u v w 表示一条边 (u和v是边的端点, w是边权) 输出 输出一行一个正整数表示答案 样例输入 2 2 1 2 2 2 1 3 样例输出 2 提示 n ≤ 10^

Sum of Consecutive Prime Numbers POJ - 2739

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The intege

最小生成树 prime kruskal

带权图分为有向和无向 无向图的最短路径又叫做最小生成树,有prime算法和kruskal算法: 有向图的最短路径算法,有dijkstra算法和floyd算法. 生成树的概念:联通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树 生成树是联通图的极小连通子图.所谓极小是指:若在树中任意增加一条边,则 将出现一个回路:若去掉一条边,将会使之编程非连通图.生成树各边的权 值总和称为生成素的权.权最小的生成树称为最小生成树,常用的算法有prime算法和kruskal算法. 最小生成树