机器学习实战笔记(Python实现)-03-朴素贝叶斯

---------------------------------------------------------------------------------------

本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。

源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction

---------------------------------------------------------------------------------------

1、算法概述

1.1 朴素贝叶斯

朴素贝叶斯是使用概率论来分类的算法。其中朴素:各特征条件独立;贝叶斯:根据贝叶斯定理。

根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是:

 -------(1)

在这里,x 是一个特征向量,设 x 维度为 M。因为朴素的假设,即特征条件独立,根据全概率公式展开,上式可以表达为:

这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了。类别 y 的先验概率可以通过训练集算出,同样通过训练集上的统计,可以得出对应每一类上的,条件独立的特征对应的条件概率向量。

1.2 算法特点

优点:在数据较少的情况下仍然有效,可以处理多类别问题。

缺点:对于输入数据的准备方式较为敏感。

适用数据类型:标称型数据。

2、使用Python进行文本分类

要从文本中获取特征,需要先拆分文本。可以把词条想象为单词,也可以使用非单词词条,如URL、IP地址或者任意其他字符串。然后将每一个文本片段表示为一个词条向量,其中值为1表示词条出现在文档中,0表示词条未出现。

2.1 准备数据:从文本中构建词向量

 1 from numpy import *
 2
 3 def loadDataSet():
 4     ‘‘‘
 5     postingList: 进行词条切分后的文档集合
 6     classVec:类别标签
 7     ‘‘‘
 8     postingList=[[‘my‘, ‘dog‘, ‘has‘, ‘flea‘, ‘problems‘, ‘help‘, ‘please‘],
 9                  [‘maybe‘, ‘not‘, ‘take‘, ‘him‘, ‘to‘, ‘dog‘, ‘park‘, ‘stupid‘],
10                  [‘my‘, ‘dalmation‘, ‘is‘, ‘so‘, ‘cute‘, ‘I‘, ‘love‘, ‘him‘],
11                  [‘stop‘, ‘posting‘, ‘stupid‘, ‘worthless‘, ‘garbage‘],
12                  [‘mr‘, ‘licks‘, ‘ate‘, ‘my‘, ‘steak‘, ‘how‘, ‘to‘, ‘stop‘, ‘him‘],
13                  [‘quit‘, ‘buying‘, ‘worthless‘, ‘dog‘, ‘food‘, ‘stupid‘]]
14     classVec = [0,1,0,1,0,1]    #1代表侮辱性文字,0代表正常言论
15     return postingList,classVec
16
17 def createVocabList(dataSet):
18     vocabSet = set([])#使用set创建不重复词表库
19     for document in dataSet:
20         vocabSet = vocabSet | set(document) #创建两个集合的并集
21     return list(vocabSet)
22
23 def setOfWords2Vec(vocabList, inputSet):
24     returnVec = [0]*len(vocabList)#创建一个所包含元素都为0的向量
25     #遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
26     for word in inputSet:
27         if word in vocabList:
28             returnVec[vocabList.index(word)] = 1
29         else: print("the word: %s is not in my Vocabulary!" % word)
30     return returnVec
31 ‘‘‘
32 我们将每个词的出现与否作为一个特征,这可以被描述为词集模型(set-of-words model)。
33 如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某种信息,
34 这种方法被称为词袋模型(bag-of-words model)。
35 在词袋中,每个单词可以出现多次,而在词集中,每个词只能出现一次。
36 为适应词袋模型,需要对函数setOfWords2Vec稍加修改,修改后的函数称为bagOfWords2VecMN
37 ‘‘‘
38 def bagOfWords2VecMN(vocabList, inputSet):
39     returnVec = [0]*len(vocabList)
40     for word in inputSet:
41         if word in vocabList:
42             returnVec[vocabList.index(word)] += 1
43     return returnVec

2.2 训练算法:从词向量计算概率

计算每个类别的条件概率,伪代码:

 1 def trainNB0(trainMatrix,trainCategory):
 2     ‘‘‘
 3     朴素贝叶斯分类器训练函数(此处仅处理两类分类问题)
 4     trainMatrix:文档矩阵
 5     trainCategory:每篇文档类别标签
 6     ‘‘‘
 7     numTrainDocs = len(trainMatrix)
 8     numWords = len(trainMatrix[0])
 9     pAbusive = sum(trainCategory)/float(numTrainDocs)
10     #初始化所有词出现数为1,并将分母初始化为2,避免某一个概率值为0
11     p0Num = ones(numWords); p1Num = ones(numWords)#
12     p0Denom = 2.0; p1Denom = 2.0 #
13     for i in range(numTrainDocs):
14         if trainCategory[i] == 1:
15             p1Num += trainMatrix[i]
16             p1Denom += sum(trainMatrix[i])
17         else:
18             p0Num += trainMatrix[i]
19             p0Denom += sum(trainMatrix[i])
20     #将结果取自然对数,避免下溢出,即太多很小的数相乘造成的影响
21     p1Vect = log(p1Num/p1Denom)#change to log()
22     p0Vect = log(p0Num/p0Denom)#change to log()
23     return p0Vect,p1Vect,pAbusive

2.3 测试算法

分类函数:

 1 def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
 2     ‘‘‘
 3     分类函数
 4     vec2Classify:要分类的向量
 5     p0Vec, p1Vec, pClass1:分别对应trainNB0计算得到的3个概率
 6     ‘‘‘
 7     p1 = sum(vec2Classify * p1Vec) + log(pClass1)
 8     p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
 9     if p1 > p0:
10         return 1
11     else:
12         return 0

测试:

 1 def testingNB():
 2     listOPosts,listClasses = loadDataSet()
 3     myVocabList = createVocabList(listOPosts)
 4     trainMat=[]
 5     for postinDoc in listOPosts:
 6         trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
 7     #训练模型,注意此处使用array
 8     p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
 9     testEntry = [‘love‘, ‘my‘, ‘dalmation‘]
10     thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
11     print(testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb))
12     testEntry = [‘stupid‘, ‘garbage‘]
13     thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
14     print(testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb))

3、实例:使用朴素贝叶斯过滤垃圾邮件

一般流程:

3.1 切分文本

将长字符串切分成词表,包括将大写字符转换成小写,并过滤字符长度小于3的字符。

1 def textParse(bigString):#
2     ‘‘‘
3     文本切分
4     输入文本字符串,输出词表
5     ‘‘‘
6     import re
7     listOfTokens = re.split(r‘\W*‘, bigString)
8     return [tok.lower() for tok in listOfTokens if len(tok) > 2]
9     

3.2 使用朴素贝叶斯进行垃圾邮件分类

 1 def spamTest():
 2     ‘‘‘
 3     垃圾邮件测试函数
 4     ‘‘‘
 5     docList=[]; classList = []; fullText =[]
 6     for i in range(1,26):
 7         #读取垃圾邮件
 8         wordList = textParse(open(‘email/spam/%d.txt‘ % i,‘r‘,encoding= ‘utf-8‘).read())
 9         docList.append(wordList)
10         fullText.extend(wordList)
11         #设置垃圾邮件类标签为1
12         classList.append(1)
13         wordList = textParse(open(‘email/ham/%d.txt‘ % i,‘r‘,encoding= ‘utf-8‘).read())
14         docList.append(wordList)
15         fullText.extend(wordList)
16         classList.append(0)
17     vocabList = createVocabList(docList)#生成次表库
18     trainingSet = list(range(50))
19     testSet=[]           #
20     #随机选10组做测试集
21     for i in range(10):
22         randIndex = int(random.uniform(0,len(trainingSet)))
23         testSet.append(trainingSet[randIndex])
24         del(trainingSet[randIndex])
25     trainMat=[]; trainClasses = []
26     for docIndex in trainingSet:#生成训练矩阵及标签
27         trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
28         trainClasses.append(classList[docIndex])
29     p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
30     errorCount = 0
31     #测试并计算错误率
32     for docIndex in testSet:
33         wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
34         if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
35             errorCount += 1
36             print("classification error",docList[docIndex])
37     print(‘the error rate is: ‘,float(errorCount)/len(testSet))
38     #return vocabList,fullText

4、实例:使用朴素贝叶斯分类器从个人广告中获取区域倾向

一般流程:

在这个中,我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的征婚广告信息,来比较这两个城市的人们在广告用词上是否不同 。

4.1 实现代码

 1 ‘‘‘
 2 函数localWords()与程序清单中的spamTest()函数几乎相同,区别在于这里访问的是
 3 RSS源而不是文件。然后调用函数calcMostFreq()来获得排序最高的30个单词并随后将它们移除
 4 ‘‘‘
 5 def localWords(feed1,feed0):
 6     import feedparser
 7     docList=[]; classList = []; fullText =[]
 8     minLen = min(len(feed1[‘entries‘]),len(feed0[‘entries‘]))
 9     for i in range(minLen):
10         wordList = textParse(feed1[‘entries‘][i][‘summary‘])
11         docList.append(wordList)
12         fullText.extend(wordList)
13         classList.append(1) #NY is class 1
14         wordList = textParse(feed0[‘entries‘][i][‘summary‘])
15         docList.append(wordList)
16         fullText.extend(wordList)
17         classList.append(0)
18     vocabList = createVocabList(docList)#create vocabulary
19     top30Words = calcMostFreq(vocabList,fullText)   #remove top 30 words
20     for pairW in top30Words:
21         if pairW[0] in vocabList: vocabList.remove(pairW[0])
22     trainingSet = list(range(2*minLen)); testSet=[]           #create test set
23     for i in range(10):
24         randIndex = int(random.uniform(0,len(trainingSet)))
25         testSet.append(trainingSet[randIndex])
26         del(trainingSet[randIndex])
27     trainMat=[]; trainClasses = []
28     for docIndex in trainingSet:#train the classifier (get probs) trainNB0
29         trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
30         trainClasses.append(classList[docIndex])
31     p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
32     errorCount = 0
33     for docIndex in testSet:        #classify the remaining items
34         wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
35         if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
36             errorCount += 1
37     print(‘the error rate is: ‘,float(errorCount)/len(testSet))
38     return vocabList,p0V,p1V
39
40 def calcMostFreq(vocabList,fullText):
41     ‘‘‘
42     返回前30个高频词
43     ‘‘‘
44     import operator
45     freqDict = {}
46     for token in vocabList:
47         freqDict[token]=fullText.count(token)
48     sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
49     return sortedFreq[:30]
50
51 if __name__== "__main__":
52     #导入RSS数据源
53     import operator
54     ny=feedparser.parse(‘http://newyork.craigslist.org/stp/index.rss‘)
55     sf=feedparser.parse(‘http://sfbay.craigslist.org/stp/index.rss‘)
56     localWords(ny,sf)
时间: 2024-10-10 14:20:14

机器学习实战笔记(Python实现)-03-朴素贝叶斯的相关文章

机器学习Matlab实战之垃圾邮件分类————朴素贝叶斯模型

本系列来自于我<人工智能>课程复习总结以及机器学习部分的实验总结 垃圾邮件分类是监督学习分类中一个最经典的案例,本文先复习了基础的概率论知识.贝叶斯法则以及朴素贝叶斯模型的思想,最后给出了垃圾邮件分类在Matlab中用朴素贝叶斯模型的实现 1.概率 1.1 条件概率 定义:事件B发生的情况下,事件A发生的概率记作条件概率P(A|B) P(A|B)=P(A∧B)P(B) 条件概率也叫后验概率,无条件概率也叫先验概率(在没有任何其它信息存在的情况下关于命题的信度) 可以得到乘法规则: P(A∧B)

斯坦福机器学习实现与分析之六(朴素贝叶斯)

朴素贝叶斯(Naive Bayes)适用于离散特征的分类问题,对于连续问题则需将特征离散化后使用.朴素贝叶斯有多元伯努利事件模型和多项式事件模型,在伯努利事件模型中,特征每一维的值只能是0或1,而多项式模型中特征每一维的值可取0到N之间的整数,因此伯努利模型是多项式模型的一种特例,下面的推导就直接使用伯努利模型. 朴素贝叶斯原理推导 与GDA类似,朴素贝叶斯对一个测试样本分类时,通过比较p(y=0|x)和p(y=1|x)来进行决策.根据贝叶斯公式: \( \begin{aligned} p(y=

斯坦福《机器学习》Lesson5感想———2、朴素贝叶斯算法

朴素贝叶斯算法与上篇中写到到生成学习算法的思想是一致的.它不需要像线性回归等算法一样去拟合各种假设的可能,只需要计算各种假设的概率,然后选择概率最高的那种假设分类类别.其中还添入了一个贝叶斯假定:在给定目标值y时属性值x之间相互独立.这样的分类算法被称为朴素贝叶斯分类器(Naive Bayes classifier)  . 1.朴素贝叶斯算法 在朴素贝叶斯算法的模型里,给定的训练集为, 可计算,.因为贝叶斯假定,可以计算出联合似然概率函数: 最大化联合似然概率函数可得到: 然后我们就可以对新的数

机器学习实战笔记(Python实现)-06-AdaBoost

--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------

机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

属原创文章,欢迎转载,但请注明出处:http://www.cnblogs.com/hemiy/p/6155425.html 谢谢! 代码及数据-->https://github.com/Wellat/MLaction 1 算法概述 1.1 算法特点 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称型 1.2 工作原理 存在一个训练样本集,并且每个样本都存在标签(有监督学习)

机器学习实战笔记(Python实现)-02-决策树

属原创文章,欢迎转载,但请注明出处:http://www.cnblogs.com/hemiy/p/6165759.html 谢谢! 代码及数据-->https://github.com/Wellat/MLaction 1.算法概述及实现 1.1 算法特点 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据 缺点:可能会产生过度匹配问题 适用数据类型:数值型和标称型 1.2 构造决策树 在构造决策树时,需要解决的第一个问题就是,评估当前数据集上哪个特征在划分数据分

机器学习实战笔记(Python实现)-07-分类性能度量指标

1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正正例的比例. 召回率(Recall),他等于 TP/(TP+FN),给出的是预测为正例的真实正例占所有真实正例的比例. 2.ROC曲线 图中的横轴是伪正例的比例(假阳率=FP/(FP+TN)),而纵轴是真正例的比例(真阳率=TP/(TP+FN)).ROC曲线给出的是当阈值变化时假阳率和真阳率的变化情

趣味案例理解朴素贝叶斯

机器学习(10)之趣味案例理解朴素贝叶斯 转载:https://mp.weixin.qq.com/s/s0v_afLVqtJhZyn3qHlseQ 01 病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难.某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头疼 建筑工人 脑震荡 头疼 建筑工人 感冒 打喷嚏 教师 感冒 头疼 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患上感冒的概率有多大? 根据贝

《机器学习实战》学习笔记:基于朴素贝叶斯的分类方法

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率. 目录: 一.基于贝叶斯理论的分类方法 二.关于朴素贝叶斯的应用场景 三.基于Python和朴素贝叶斯的文本分类 1.准备数据 2.训练算法 3.测试算法 四.小结 以下进入正文: 一.基于贝叶斯理论的分类方法 假设有两类数据组成的数据集如下: 其中,假设两个概率分布的参数已知,并用p1(x,y)表示当前数据点(x,y)属于类