图像处理中的数学原理详解17——卷积定理及其证明

欢迎关注我的博客专栏“图像处理中的数学原理详解

全文目录请见 图像处理中的数学原理详解(总纲)

http://blog.csdn.net/baimafujinji/article/details/48467225

图像处理中的数学原理详解(已发布的部分链接整理)

http://blog.csdn.net/baimafujinji/article/details/48751037

1.4.5   卷积定理及其证明

卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。换言之,一个域中的卷积对应于另一个域中的乘积,例如,时域中的卷积对应于频域中的乘积。

这一定理对拉普拉斯变换、Z变换等各种傅立叶变换的变体同样成立。需要注意的是,以上写法只对特定形式的变换正确,因为变换可能由其它方式正规化,从而使得上面的关系式中出现其它的常数因子。
下面我们来证明时域卷积定理,频域卷积定理的证明与此类似,读者可以自行证明。
证明:将卷积的定义

傅立叶变换的作用在频域对信号进行分析,我们可以把时域的信号看做是若干正弦波的线性叠加,傅立叶变换的作用正是求得这些信号的幅值和相位。既然固定的时域信号是若干固定正弦信号的叠加,在不改变幅值的情况下,在时间轴上移动信号,也就相当于同时移动若干正弦信号,这些正弦信号的相位改变、但幅值不变,反映在频域上就是傅立叶变换结果的模不变、而相位改变。所以,时移性质其实就表明当一个信号沿时间轴平移后,各频率成份的大小不发生改变,但相位发生变化。
既然这里提到了傅立叶变换的性质,这里我们还将补充一些关于帕塞瓦尔定理的有关内容。该定理最早是由法国数学家帕塞瓦尔(Marc-Antoine Parseval)在1799年推导出的一个关于级数的理论,该定理随后被应用于傅立叶级数。帕塞瓦尔定理的表述是这样的:

综上所述,原结论得证。
前面我们也介绍过复数形式的傅立叶级数,下面我们来推导与复数形式傅立叶变换相对应的帕塞瓦尔等式。这里再次给出傅立叶级数的复数形式表达式,具体推导过程请读者参阅前文

帕塞瓦尔定理把一个信号的能量或功率的计算和频谱函数或频谱联系起来了,它表明一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。换言之,能量信号的总能量等于各个频率分量单独贡献出来的能量的连续和;而周期性功率信号的平均功率等于各个频率分量单独贡献出来的功率之和。

时间: 2024-10-11 08:08:25

图像处理中的数学原理详解17——卷积定理及其证明的相关文章

图像处理中的数学原理详解18——内积与外积

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 1.3.2 内积与外积 因为cos(π/2)=0.当然,这也是众多教科书上介绍向量内积最开始时常常用到的一

图像处理中的数学原理详解21——PCA实例与图像编码

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 如果你对PCA的推导和概念还不是很清楚,建议阅读本文的前导文章 http://blog.csdn.net/

详解希尔伯特空间——图像处理中的数学原理详解23

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 交流学习可加图像处理研究学习QQ群(529549320) 有段时间没继续更新我的"图像处理中的数

图像处理中的数学原理详解9——索伯列夫空间

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 在泛函分析中,索伯列夫空间并不像 巴拿赫空间或者希尔伯特空间那么引入注意.但是在图像处理中,索伯列夫空间在介绍BV空间(有界变差函数空间)时,会被提到.而BV函数空间对于理解TV算法(偏微分方程在图像处理中的重要内容)至关重要!所以我特别在"图像处理中的数学原理详解"系列文章中留出一个小节来对索伯列夫空间进行必

图像处理中的数学原理详解13——内积空间

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 2.3.5 内积空间 前面我们已经讨论过关于内积的话题,此处以公理化的形式给出内积的定义. 版权声明:本文为博主原创文章,未经博主允许不得转载.

图像处理中的数学原理详解(Part7) ——哈密尔顿算子

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 在前面的部分中我们已经完整地给出了梯度和散度这些数学概念的意义,这些生涩的定义在最初学习的时候很少有人会注意到它们跟图像能有什么联系.然而,随着学习的深入,当真正接触到图像处理算法时,你又不得不承认,梯度.散度这些东西几乎是无处不在的.本节所介绍的内容就是这些概念在图像处理中的最最简单应用之范例.这部分内容与边缘检测技术

图像处理中的数学原理详解15——数列的极限

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 数学是图像处理技术的重要基础.在与图像处理有关的研究和实践中无疑需要用到大量的数学知识,这不免令许多基础薄

图像处理中的数学原理详解14——曲面积分

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 我整理了图像处理中可能用到的一些数学基础,将其分成了6个章节(全文目录见上方链接).如果你对其中的某一小节

关于开设“图像处理中的数学原理详解”博客专栏的说明

近期,我在CSDN开设了一个博客专栏"图像处理中的数学原理详解",专门用于发布这个系列的文章.. 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 我整理了图像处理中可能用到的一些数学基础,将其分成了6个章节(全文目录见上方链接).如果你对其中的某一小节特别感兴趣,但是它还没有被发布,你可以在博客下方留言,我会据此调整发布顺序.但是请务必精确地指出章节标号(例如1.3.7