1、程序设计原则:SOLIP
SOLIP设计原则
1、单一责任原则(SRP)
一个对象对只应该为一个元素负责
2、开放封闭原则(OCP)
对扩展开放,修改封闭
3、里氏替换原则(LSP)
可以使用任何派生类替换基类
4、接口分离原则(ISP)
对于接口进行分类避免一个接口的方法过多
5、依赖倒置原则(DIP)
隔离关系,使用接口或抽象类代指
6、依赖注入(DI)和控制反转原则(ICO)
使用钩子再原来执行流程中注入其他对象
接口:
# =================================================以下是接口 class IorderRepository: ##接口 def fetch_one_by(self,nid): ‘‘‘ 获取单条数据的方法,所有的继承呢当前类的类必须继承 :param nid: :return: ‘‘‘ # raise Exception(‘子类中必须包含该方法‘) class OrderReposititory(IorderRepository): #类 def fetch_one_by(self,nid): print(nid) obj = OrderReposititory() obj.fetch_one_by(1)
抽象类抽象方法
import abc class Foo(metaclass=abc.ABCMeta): ##抽象类 def f1(self): print(123) def f2(self): print(456) @abc.abstractmethod ##抽象方法 def f3(self): ‘‘‘ ??? :return: ‘‘‘ class Bar(Foo): def f3(self): print(33333) b = Bar() b.f3()
引入依赖注入
解释器解释类的流程
# ======================================解释器解释类的流程=================== # 解释器解释: # class Foo: # def __init__(self): # self.name =123 # def f1(self): # print(self.name) # 1.遇到class Foo,执行type的__init__方法 # 2.type的init的方法做什么呢!不知道 # obj =Foo() # obj.f1() # 3.执行Type的__call__方法 # 执行Foo类的__new__方法 # 执行Foo类的__init__方法
依赖注入在什么之前做什么操作
class MyType(type): def __call__(cls, *args, **kwargs): ##执行Type的__call__方法,这里的cls就是<__main__.Foo object at 0x001B59F0> Foo类 obj = cls.__new__(cls, *args, **kwargs) ##Foo的__new__方法 print(‘-------------‘) obj.__init__(*args, **kwargs) ##在执行Foo的__init__的之前做什么操作 return obj class Foo(metaclass=MyType): def __init__(self, name): print(‘============‘) self.name = name def f1(self): print(self.name) obj = Foo(123) print(obj) print(obj.name)
#=================================依赖注入案例一====================================== class MyType(type): def __call__(cls, *args, **kwargs): ##执行Type的__call__方法,这里的cls就是<__main__.Foo object at 0x001B59F0> Foo类 obj = cls.__new__(cls, *args, **kwargs) ##Foo的__new__方法 if cls == Foo1: obj.__init__(Foo()) elif cls == Foo2: obj.__init__(Foo1()) return obj class Foo(metaclass=MyType): def __init__(self, args): print(‘============‘) self.name = args def f(self): print(self.name) class Foo1(metaclass=MyType): def __init__(self, args): print(‘============‘) self.name = args def f1(self): print(self.name) class Foo2(metaclass=MyType): def __init__(self, args): print(‘============‘) self.name = args def f2(self): print(self.name) obj = Foo2() obj.f2() # <__main__.Foo1 object at 0x002DA4F0>
#######################依赖注入案例二==================================================== # # class Mapper: # __mapper_relation = {} # # @staticmethod # def register(cls, value): # Mapper.__mapper_relation[cls] = value # # @staticmethod # def exist(cls): ###判断是否在里面 # if cls in Mapper.__mapper_relation: # return True # return False # # @staticmethod # def value(cls): # return Mapper.__mapper_relation[cls] # # # class MyType(type): # def __call__(cls, *args, **kwargs): ##执行Type的__call__方法,这里的cls就是<__main__.Foo object at 0x001B59F0> Foo类 # obj = cls.__new__(cls, *args, **kwargs) ##Foo的__new__方法 # arg_list = list(args) # if Mapper.exist(cls): # value = Mapper.value(cls) # arg_list.append(value) # obj.__init__(*arg_list, **kwargs) ##在执行Foo的__init__的之前做什么操作 # return obj # # # class Foo(metaclass=MyType): # def __init__(self, name): # self.name = name # # def f1(self): # print(self.name) # # # class Bar(metaclass=MyType): # def __init__(self, name): # self.name = name # # def f1(self): # print(self.name) # # # Mapper.register(Foo, ‘666‘) # Mapper.register(Bar, ‘999‘) # obj = Foo() # # print(obj) # print(obj.name) # b = Bar() # print(b.name) # <__main__.Foo object at 0x00583810> # 666 # 999
时间: 2024-10-12 13:44:52