09 使用Tensorboard查看训练过程

打开Python Shell,执行以下代码:

import tensorflow as tf
import numpy as np

#输入数据
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0,0.05, x_data.shape)
y_data = np.square(x_data)-0.5+noise

#输入层
with tf.name_scope(‘input_layer‘): #输入层。将这两个变量放到input_layer作用域下,tensorboard会把他们放在一个图形里面
    xs = tf.placeholder(tf.float32, [None, 1], name = ‘x_input‘) # xs起名x_input,会在图形上显示
    ys = tf.placeholder(tf.float32, [None, 1], name = ‘y_input‘) # ys起名y_input,会在图形上显示

#隐层
with tf.name_scope(‘hidden_layer‘): #隐层。将隐层权重、偏置、净输入放在一起
    with tf.name_scope(‘weight‘): #权重
        W1 = tf.Variable(tf.random_normal([1,10]))
        tf.summary.histogram(‘hidden_layer/weight‘, W1)
    with tf.name_scope(‘bias‘): #偏置
        b1 = tf.Variable(tf.zeros([1,10])+0.1)
        tf.summary.histogram(‘hidden_layer/bias‘, b1)
    with tf.name_scope(‘Wx_plus_b‘): #净输入
        Wx_plus_b1 = tf.matmul(xs,W1) + b1
        tf.summary.histogram(‘hidden_layer/Wx_plus_b‘,Wx_plus_b1)
output1 = tf.nn.relu(Wx_plus_b1)

#输出层
with tf.name_scope(‘output_layer‘): #输出层。将输出层权重、偏置、净输入放在一起
    with tf.name_scope(‘weight‘): #权重
        W2 = tf.Variable(tf.random_normal([10,1]))
        tf.summary.histogram(‘output_layer/weight‘, W2)
    with tf.name_scope(‘bias‘): #偏置
        b2 = tf.Variable(tf.zeros([1,1])+0.1)
        tf.summary.histogram(‘output_layer/bias‘, b2)
    with tf.name_scope(‘Wx_plus_b‘): #净输入
        Wx_plus_b2 = tf.matmul(output1,W2) + b2
        tf.summary.histogram(‘output_layer/Wx_plus_b‘,Wx_plus_b2)
output2 = Wx_plus_b2

#损失
with tf.name_scope(‘loss‘): #损失
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-output2),reduction_indices=[1]))
    tf.summary.scalar(‘loss‘,loss)
with tf.name_scope(‘train‘): #训练过程
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

#初始化
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
merged = tf.summary.merge_all() #将图形、训练过程等数据合并在一起
writer = tf.summary.FileWriter(‘logs‘,sess.graph) #将训练日志写入到logs文件夹下

#训练
for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if(i%50==0): #每50次写一次日志
        result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #计算需要写入的日志数据
        writer.add_summary(result,i) #将日志数据写入文件
        

执行上述代码,会在“当前路径/logs”目录下生成一个events.out.tfevents.{time}.{machine-name}的文件。在当前目录新建“查看训练过程.bat”,里面输入。

tensorboard --logdir=logs

执行上述bat文件,打开浏览器,输入地址:http://localhost:6006,就可以查看训练过程中的各种图形。

    重要提示:请不要用中文命名目录,中文目录中看不到任何图形。这个问题困扰了我一周!!!

时间: 2024-10-25 01:02:30

09 使用Tensorboard查看训练过程的相关文章

tensorboard实现训练的可视化

tensorboard是tensorflow自带的可视化工具 输入命令可以启动tensorboard服务. tensorboard --logdir=your log dir 通过浏览器localhost:6006进入可视化界面,可以看到能够进行可视化的选项,包括 SCALARS:显示训练过程中的损失值.准确率.权重偏置变化 IMAGES:显示训练的图像 AUDIO:显示训练的音频 GRAPHS:可视化模型 DISTRIBUTIONS:记录数据的分布 HISTOGRAMS:数据的直方图 EMBE

深度残差网(deep residual networks)的训练过程

这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-residual-networks-pyfunt 2.这些训练代码需要和pydataset包.下面介绍这两个包的安装方法. (1)pyfunt需要安装. 用命令:pip install git+git://github.com/dnlcrl/PyFunt.git  进行下载安计.        安装时

DeepLearning tutorial(2)机器学习算法在训练过程中保存参数

我是小白,说的不是很好,请原谅 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43169019 参考:pickle - Python object serialization.DeepLearning Getting started 一.python读取"***.pkl.gz"文件 用到Python里的gzip以及cPickle模块,简单的使用代码如下,如果想详细了解可以参考上面给出的链接. [p

OpenCV中的Haar+Adaboost(七):分类器训练过程

本节文章讲解OpenCV中Haar+Adaboost的训练过程.此文章假定读者已经了解前面5章的内容,包括Haar特征,弱分类器和强分类器结构,以及GAB等内容. 在opencv_traincascade.exe程序中,有如下参数 如上输入的boostParams中的6个参数决用于决定训练过程: 1. 参数bt选择Boosting类型(默认GAB),本系列文章五中已经介绍了 2. minHitRate和maxFalseAlarmRate限定训练过程中各种阈值大小,文章六已经介绍了 3. 参数we

(原)torch的训练过程

转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221622.html 参考网址: http://ju.outofmemory.cn/entry/284587 https://github.com/torch/nn/blob/master/doc/criterion.md 假设已经有了model=setupmodel(自己建立的模型),同时也有自己的训练数据input,实际输出outReal,以及损失函数criterion(参见第二个网址),则使用

aam中的训练过程

aam的训练过程分为两部分:对图片中物体的建模:寻找参数变化量δc和图片与模型灰度差的关系R. 对物体的建模分三步:对形状shape建模,对纹理texture建模,组合形状和纹理模型得到最终的aam模型 1. shape 在aam中,图片中的物体是手动标记出关键点的,比如人脸图像,将会被人工标记出眉毛,眼睛,鼻子,嘴巴,脸型等特征. 要注意一点的是点的存储方式.有的点由(x,y)坐标表示的话,是在笛卡尔坐标系上的,按照我们从小学习的几何知识可以在图片中正确的标出位置.然而matlab在处理图片的

解决caffe绘制训练过程的loss和accuracy曲线时候报错:paste: aux4.txt: 没有那个文件或目录 rm: 无法删除"aux4.txt": 没有那个文件或目录

我用的是faster-rcnn,在绘制训练过程的loss和accuracy曲线时候,抛出如下错误,在网上查找无数大牛博客后无果,自己稍微看了下代码,发现,extract_seconds.py文件的 get_start_time()函数在获取时间时候获取失败,因为if line.find('Solving') != -1:这个语句判断错误导致,具体解决办法: 将该函数改造成: def get_start_time(line_iterable, year):    """Find

caffe绘制训练过程的loss和accuracy曲线

转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果.如 果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/ext

TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题

一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non