【欧几里德算法】POJ2773-HAPPY 2006

【题目大意】

求与n互质的第k个数。

【思路】

先求出小于k且与n互质的数,再利用gcd(bt+a,b)=gcd(a,b)的性质求解,效率低。枚举与n互质的数的效率是O(nlogn),求解第k个数的效率是O(1)。

据说0ms做法是容斥+二分?

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 const int MAXN= 1000001;
 7 int n,k;
 8 int phi,p[MAXN];//与n互质的phi个数的表,其中第phi个放在下标0的位置。
 9
10 int gcd(int a,int b)
11 {
12     if (a%b==0) return b;
13         else return gcd(b,a%b);
14 }
15
16 void getp()
17 {
18     phi=0;
19     for (int i=1;i<n;i++)
20         if (gcd(n,i)==1) p[++phi]=i;
21 }
22
23 int main()
24 {
25     while (~scanf("%d%d",&n,&k))
26     {
27         if (n!=1)
28         {
29             getp();
30             printf("%d\n",k%phi==0? (k-1)/phi*n+p[phi]:k/phi*n+p[(k%phi)]);
31         }
32         else cout<<k<<endl;
33     }
34     return 0;
35 }
时间: 2024-08-09 06:34:26

【欧几里德算法】POJ2773-HAPPY 2006的相关文章

POJ 2773 Happy 2006 (分解质因数+容斥+二分 或 欧几里德算法应用)

Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10309   Accepted: 3566 Description Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are a

POJ 2773 Happy 2006(欧几里德算法)

题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里德算法又名辗转相除法,原先单纯的用于求最大公约数,这里也算是一个小小的拓展应用,这个题利用的欧几里德算法的重要性质,假如a与b互质,那么b*t+a与b也一定互质,那样我们可以枚举1-m之间所有符合条件的数,然后打一个表格,求出所有符合条件的数,正如下表中的(5,5)所示,这个表格是一个带有周期性的自

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

如何使用循环而不是递归反推的方式实现拓展欧几里德算法

平常我们使用拓展欧几里德算法求pm + qn = gcd(m, n)这种表示时,一般都会选择递归的方式来实现,因为欧几里得算法的递归深度最多也只有O(lgn), according to lame's theorem,所以这个递归用栈是可以忽略的. 但其实只需要循环就可以求出一组pm + qn = gcd(m, n)的表示,将栈深度保持在O(1),这样的写法在使用函数调用的高级语言中看起来复杂一点但在汇编编程时就显得比较简单. 方法是假设第k次迭代中的两个数分别为 M(k) 和 N(k),我们始

ACM数论之旅4---扩展欧几里德算法(欧几里德(???)?是谁?)

为什么老是碰上 扩展欧几里德算法 ( •?∀•? )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •?∀•? )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了) 那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式 1 #include<cstdio> 2 typedef long long LL;

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有

算法总结之欧几里德算法

算法总结之欧几里德算法 1.欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0) 代码实现: 1 int gcd(int a,int b) 2 { 3 return b==0?a:gcd(b,a%b); 4 } 2.扩展欧几里德算法 基本算法: 对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y,