Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode"
,
dict = ["leet", "code"]
.
Return true because "leetcode"
can be segmented as "leet
.
code"
一看这题目,就感觉里面回溯法,因为这种题,在回溯法中在平常不过了。上代码:
public boolean wordBreak(String s, Set<String> dict) { StringBuilder sb = new StringBuilder(); return helper(s, dict, 0, sb); } private boolean helper(String s, Set<String> dict, int index, StringBuilder sb) { if (index == dict.size()) { return s.equals(sb.toString()); } Iterator<String> iter = dict.iterator(); while (iter.hasNext()) { StringBuilder sb1 = new StringBuilder(sb); String dic = iter.next(); sb.append(dic); iter.remove(); if (helper(s, dict, index+1, sb)) return true; dict.add(dic); sb = sb1; } return false; }
结果超时!一般情况下,对于回溯的时间限制都是比较宽的,但是超时!肯定有优化的空间吧,剪枝啊:、
public boolean wordBreak(String s, Set<String> dict) { StringBuilder sb = new StringBuilder(); return helper(s, dict, 0, sb); } private boolean helper(String s, Set<String> dict, int index, StringBuilder sb) { if (!s.startsWith(sb.toString())) { return false; } if (index == dict.size()) { return s.equals(sb.toString()); } Iterator<String> iter = dict.iterator(); while (iter.hasNext()) { StringBuilder sb1 = new StringBuilder(sb); String dic = iter.next(); sb.append(dic); iter.remove(); if (helper(s, dict, index+1, sb)) return true; dict.add(dic); sb = sb1; } return false; }
其实这个剪枝可以减去很多分支,但是还是超时!怎么办?只能用最高效的动态规划了,上代码:
public boolean wordBreak1(String s, Set<String> dict) { int length = s.length(); boolean[] can = new boolean[length+1]; can[0] = true; for (int i = 1; i <= length; i++) { for (int j = 0; j < i; j++) { if (can[j] && dict.contains(s.substring(j, i))) { can[i] = true; break; } } } return can[length]; }
boolean数组can[i]是指,s.substring(0,i)是可以分割的,所示数组最后一个元素即为所求。
时间: 2024-11-05 11:55:18