Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are:
1 @ US$3 + 1 @ US$2 1 @ US$3 + 2 @ US$1 1 @ US$2 + 3 @ US$1 2 @ US$2 + 1 @ US$1 5 @ US$1
Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).
Input
A single line with two space-separated integers: N and K.
Output
A single line with a single integer that is the number of unique ways FJ can spend his money.
Sample Input
5 3
Sample Output
5
来源: https://vjudge.net/problem/description/9920
题意:有n元钱,商品的价格在1~k元(每种价格的商品数量无限),用n元去买这些商品,最多有多少种选择?
题解:
根据完全背包思想,第一个循环表示商品价值(i),第二个循环表示我的本钱(j)。
得出方程:dp[j] = dp[j] + dp[j-i]
- dp[j]表示当商品价格最大为 i 时,我用 j 元买这些商品的选择数。
- dp[j-i]就是根据背包问题的二进制思想来计数当有 i (当前 i 和之前算过的 i)的倍数元时的商品选择数。
当然,题目肯定不会那么简单,n范围是1000,k范围是100,会超出long long,所以我们可以把dp拆成两个数组,一个存储高位数,一个存低位数,最后拼接输出。
核心部分:
a[j]=a[j]+a[j-i]+(b[j]+b[j-i])/INF;
b[j]=(b[j]+b[j-i])%INF;
我们用a来存高位,用b来存低位(19位数之前),也就是说在19位数之前,a一直都是0,当超过19位数时,a才有能值。
也许这部分a[j]=a[j]+a[j-i]+(b[j]+b[j-i])/INF有些难理解,它和状态方程不太一样。其实并不是把超出部分直接赋予a即可,我们还不能忘记要记录超出部分的状态。
如下:
#include<cstdio> #include<cstring> #define ll __int64 ll INF=1000000000000000000; ll a[1010];//高位 ll b[1010];//低位 int main() { int n,k,i,j; while(scanf("%d%d",&n,&k)!=EOF) { memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); b[0]=1; for(i=1;i<=k;++i) { for(j=i;j<=n;++j) { a[j]=a[j]+a[j-i]+(b[j]+b[j-i])/INF; b[j]=(b[j]+b[j-i])%INF; } } if(a[n]==0) printf("%I64d\n",b[n]); else printf("%I64d%018I64d\n",a[n],b[n]); } return 0; }