内存自动管理

内存自动管理    20

内存模型    20

Jvm垃圾收集算法    22

标记-清除    22

标记-整理    22

复制算法    22

分代思想    23

Stop-The-World    23

java堆溢出:    24

方法区和运行时常量池溢出    27

本机直接内存溢出    29

垃圾收集器    30

引用计数器:    30

可达性分析算法    31

回收方法区    32

垃圾收集器    33

HotSpot垃圾回收器    33

l CMS Failure Mode    33

垃圾回收时机    36

时间: 2024-08-06 03:44:32

内存自动管理的相关文章

Oracle 11g设置内存自动管理

Oracle 11g设置内存自动管理: ALTER SYSTEM SET MEMORY_TARGET = 1024M SCOPE=SPFILE;ALTER SYSTEM SET memory_max_target = 1500M SCOPE=SPFILE;ALTER SYSTEM SET SGA_TARGET = 0 SCOPE=SPFILE;ALTER SYSTEM SET SGA_MAX_SIZE=800M SCOPE=SPFILE;ALTER SYSTEM SET PGA_AGGREGAT

OpenCV 2.4.9 学习笔记(2)—— OpenCV内存自动管理

OpenCV自动内存管理 目前版本的OpenCV是自动处理所有自己的内存的,虽然这么说也不是很严谨.OpenCV在2.0版本中引入了一个新的C++接口,利用自动内存管理给出了解决问题的新方法.使用这个方法,开发者不需要纠结在管理内存上,而且你的代码会变得简洁. 以 Mat为例 ,首先现在没必要再手动地(1)为其开辟空间(2)在不需要时立即将空间释放.但手动地做还是可以的:大多数OpenCV函数仍会手动地为输出数据开辟空间.当传递一个已经存在的 Mat 对象时,开辟好的矩阵空间会被重用.也就是说,

【深入理解JAVA虚拟机】第二部分.内存自动管理机制.3.垃圾收集器与内存分配策略

1.学习目的 当需要排查各种内存溢出. 内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节. Java内存运行时区域的各个部分,其中程序计数器. 虚拟机栈. 本地方法栈3个区域随线程而生,随线程而灭:栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作. 因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了. 而Java堆和方法区则不一样,一个

【深入理解JAVA虚拟机】第二部分.内存自动管理机制.2.HotSpot虚拟机对象探秘

2.HotSpot虚拟机对象探秘 对象的创建过程 1.加载类 虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载. 解析和初始化过. 如果没有,那必须先执行相应的类加载过程. 2.分配内存 在类加载检查通过后,接下来虚拟机将为新生对象分配内存. 对象所需内存的大小在类加载完成后便可完全确定为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来. 分配方式: 1.指针碰撞.适用于连续内存,需要垃圾回收

C++实现简单的内存块自动管理

#ifndef __MEM__H #define __MEM__H #include<iostream> using namespace std; //自动管理内存块 typedef unsigned char byte; class Mem { private: byte* mem; int size; void ensureMinSize(int minSize); public: Mem(); Mem(int sz); ~Mem(); int msize(); //byte* point

Cocos2d-x内存自动释放机制--透彻篇

首先在架构里面需要明白,如果使用new创建对象的话,我们需要自己释放内存,如果直接用引擎提供的警静态方法,我们可以不做内存管理,引擎自动处理,因为引擎背后有一个自动释放池.通过查看源码可以知道,每个静态方法都会调用autorelease()方法.如果我们需要引擎自动释放一个对象,创建后可以调用该对象的autorelease()(前提是该对象所属类继承自CCObject),该方法会把当前对象放入自动释放池中,每次帧过渡时都会去遍历检查是否可以释放掉该对象的内存. 源码如下: // 创建一个精灵对象

C/C++语言学习——内存分配管理

1.一个由C编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈.程序结束时由编译器自动释放. 2.堆区(heap) — 在内存开辟另一块存储区域.一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 .注意它与数据结构中的堆是两回事,分配方式倒是类似于链表. 3.全局区(静态区)(static)—编译器编译时即分配内存.全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态

C# 多线程的自动管理(线程池) 基于Task的方式

C# 多线程的自动管理(线程池) 在多线程的程序中,经常会出现两种情况:    1. 应用程序中线程把大部分的时间花费在等待状态,等待某个事件发生,然后给予响应.这一般使用 ThreadPool(线程池)来解决.     2. 线程平时都处于休眠状态,只是周期性地被唤醒.这一般使用 Timer(定时器)来解决. ThreadPool 类提供一个由系统维护的线程池(可以看作一个线程的容器),该容器需要 Windows 2000 以上系统支持,因为其中某些方法调用了只有高版本的Windows 才有的

浅谈操作系统对内存的管理

转自http://www.cnblogs.com/CareySon/archive/2012/04/25/2470063.html 简介 内存是计算机中最重要的资源之一,通常情况下,物理内存无法容纳下所有的进程.虽然物理内存的增长现在达到了N个GB,但比物理内存增长还快的是程序,所以无论物理内存如何增长,都赶不上程序增长的速度,所以操作系统如何有效的管理内存便显得尤为重要.本文讲述操作系统对于内存的管理的过去和现在,以及一些页替换的算法的介绍. 对于进程的简单介绍 在开始之前,首先从操作系统的角