在本地缓存中,最常用的就是OSCache和谷歌的Guava Cache。其中OSCache在07年就停止维护了,但它仍然被广泛的使用。谷歌的Guava Cache也是一个非常优秀的本地缓存,使用起来非常灵活,功能也十分强大,可以说是当前本地缓存中最优秀的缓存框架之一。之前我们分析了OSCache的部分源码,本篇就通过Guava Cache的部分源码,来分析一下Guava Cache的实现原理。
在分析之前,先弄清数据结构的使用。之前的文章提到,OSCache使用了一个扩展的HashTable,作为缓存的数据结构,由于在get操作上,没有使用同步的方式,通过引入一个更新状态数据结构,来控制并发访问的安全。Guava Cache也是使用一个扩展的HashTable作为其缓存数据结构,然而,在实现上,和OSCache是完全不同的。Guava Cache所用的HashTable和ConcurrentHashMap十分相似,通过引入一个Segment数组,对HashTable进行分段,通过分离锁、final以及volatile的配合,实现了并发环境下的线程安全,同时,性能也非常高(每个Segment段的操作互不影响,即使写操作,只要在不同的Segment上,也完全可以并发的执行)。具体的原理,可以参考ConcurrentHashMap的实现,这里就不进行具体的剖析了。
数据结构核心部分可以通过下面的图形表示:
CacheBuilder
CacheBuilder集成了创建缓存所需的各种参数。正如官方文档介绍的:CacheBuilder将创建一个LoadingCache和Cache的实例,该实例可以包含下面任何特性
- 自动将内容加载到缓存中
- LRU淘汰策略
- 根据上一次访问时间或写入时间决定缓存过期
- key关键字可以采用弱引用(WeakReference)
- value值可以采用弱引用(WeakReference)以及软引用(SoftReference)
- 缓存移除或回收进行通知
- 统计缓存访问性能信息
所有特性都是可选的,创建的缓存可以包含上面所有的特性,也可以都不使用,具有很强的灵活性。
下面是一个简单的使用例子:
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() .maximumSize(10000) .expireAfterWrite(10, TimeUnit.MINUTES) .removalListener(MY_LISTENER) .build( new CacheLoader<Key, Graph>() { public Graph load(Key key) throws AnyException { return createExpensiveGraph(key); } });}
还可以这样写:
String spec = "maximumSize=10000,expireAfterWrite=10m"; LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) .removalListener(MY_LISTENER) .build( new CacheLoader<Key, Graph>() { public Graph load(Key key) throws AnyException { return createExpensiveGraph(key); } });}
说明:上面的例子指定Cache容量最大为10000,并且写入后经过10分钟自动过期,并指定了一个缓存移除的消息监听器,可以在缓存移除的时候,进行指定的操作。
接下来,根据CacheBuilder的源码进行简要的分析:
CacheBuilder中一些重要的参数:
//默认容量 private static final int DEFAULT_INITIAL_CAPACITY = 16; //默认并发程度(segement大小就是通过这个计算) private static final int DEFAULT_CONCURRENCY_LEVEL = 4; //默认失效时间 private static final int DEFAULT_EXPIRATION_NANOS = 0; //默认刷新时间 private static final int DEFAULT_REFRESH_NANOS = 0; //默认性能计数器 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( new StatsCounter() { @Override public void recordHits(int count) {} @Override public void recordMisses(int count) {} @Override public void recordLoadSuccess(long loadTime) {} @Override public void recordLoadException(long loadTime) {} @Override public void recordEviction() {} @Override public CacheStats snapshot() { return EMPTY_STATS; } }); static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); static final Supplier<StatsCounter> CACHE_STATS_COUNTER = new Supplier<StatsCounter>() { @Override public StatsCounter get() { return new SimpleStatsCounter(); } }; //移除事件监听器(默认为空) enum NullListener implements RemovalListener<Object, Object> { INSTANCE; @Override public void onRemoval(RemovalNotification<Object, Object> notification) {} } enum OneWeigher implements Weigher<Object, Object> { INSTANCE; @Override public int weigh(Object key, Object value) { return 1; } } static final Ticker NULL_TICKER = new Ticker() { @Override public long read() { return 0; } }; static final int UNSET_INT = -1; boolean strictParsing = true; //初始容量 int initialCapacity = UNSET_INT; //并发程度,Segment数组的大小通过这个进行计算,后面会进行介绍 int concurrencyLevel = UNSET_INT; //缓存最大容量 long maximumSize = UNSET_INT; // long maximumWeight = UNSET_INT; Weigher<? super K, ? super V> weigher; //引用类型(默认都为强引用) Strength keyStrength; Strength valueStrength; //写入后过期时间 long expireAfterWriteNanos = UNSET_INT; //读取后过期时间 long expireAfterAccessNanos = UNSET_INT; //刷新时间 long refreshNanos = UNSET_INT; //判断是否相同的方法(因为有引用类型可以为弱引用和软引用) Equivalence<Object> keyEquivalence; Equivalence<Object> valueEquivalence; RemovalListener<? super K, ? super V> removalListener; Ticker ticker; Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;
说明:上面就是创建缓存涉及的参数,我们可以人工指定,也可以使用默认值。我们可以看看NULL_STATS_COUNTER、NullListener的定义,其对各个方法的实现进行了重写,函数内容直接为空,这也是为了不影响性能的做法。CacheBuilder将创建缓存方法进行了封装,是值得我们借鉴的地方。
Guava Cache对于缓存的key和value提供了多种引用类型,默认情况下,两者都是强引用类型。关于引用类型的枚举定义如下:
STRONG { @Override <K, V> ValueReference<K, V> referenceValue( Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight) { return (weight == 1) ? new StrongValueReference<K, V>(value) : new WeightedStrongValueReference<K, V>(value, weight); } @Override Equivalence<Object> defaultEquivalence() { return Equivalence.equals(); } }, SOFT { @Override <K, V> ValueReference<K, V> referenceValue( Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight) { return (weight == 1) ? new SoftValueReference<K, V>(segment.valueReferenceQueue, value, entry) : new WeightedSoftValueReference<K, V>( segment.valueReferenceQueue, value, entry, weight); } @Override Equivalence<Object> defaultEquivalence() { return Equivalence.identity(); } }, WEAK { @Override <K, V> ValueReference<K, V> referenceValue( Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight) { return (weight == 1) ? new WeakValueReference<K, V>(segment.valueReferenceQueue, value, entry) : new WeightedWeakValueReference<K, V>( segment.valueReferenceQueue, value, entry, weight); } @Override Equivalence<Object> defaultEquivalence() { return Equivalence.identity(); } };
值得注意的是,Equivalence<Object> defaultEquivalence()是不同的,这也正对应了上面Equivalence<Object> keyEquivalence;和Equivalence<Object> valueEquivalence;两个参数。对于强引用来说,直接使用equal进行判断对象是否相同,但对于弱引用和软引用,采用的identity方法。关于这里的的细节,会有单独章节进行讨论。本章节以STRONG进行分析。
LocalCache
这一部分结合文章开头给出的数据结构图解,就很容易理解了。
首先查看LocalCache下的成员变量:
- static final int MAXIMUM_CAPACITY = 1 << 30:缓存最大容量,该数值必须是2的幂,同时小于这个最大值2^30
- static final int MAX_SEGMENTS = 1 << 16:Segment数组最大容量
- static final int CONTAINS_VALUE_RETRIES = 3:containsValue方法的重试次数
- static final int DRAIN_THRESHOLD = 0x3F(63):Number of cache access operations that can be buffered per segment before the cache‘s recency ordering information is updated. This is used to avoid lock contention by recording a memento of reads and delaying a lock acquisition until the threshold is crossed or a mutation occurs.
- static final int DRAIN_MAX = 16:一次清理操作中,最大移除的entry数量
- final int segmentMask:定位segment
- final int segmentShift:定位segment,同时让entry分布均匀,尽量平均分布在每个segment[i]中
- final Segment<K, V>[] segments:segment数组,每个元素下都是一个HashTable
- final int concurrencyLevel:并发程度,用来计算segment数组的大小。segment数组的大小正决定了并发的程度
- final Equivalence<Object> keyEquivalence:key比较方式
- final Equivalence<Object> valueEquivalence:value比较方式
- final Strength keyStrength:key引用类型
- final Strength valueStrength:value引用类型
- final long maxWeight:最大权重
- final Weigher<K, V> weigher:计算每个entry权重的接口
- final long expireAfterAccessNanos:一个entry访问后多久过期
- final long expireAfterWriteNanos:一个entry写入后多久过期
- final long refreshNanos:一个entry写入多久后进行刷新
- final Queue<RemovalNotification<K, V>> removalNotificationQueue:移除监听器使用队列
- final RemovalListener<K, V> removalListener:entry过期移除或者gc回收(弱引用和软引用)将会通知的监听器
- final Ticker ticker:统计时间
- final EntryFactory entryFactory:创建entry的工厂
- final StatsCounter globalStatsCounter:全局缓存性能统计器(命中、未命中、put成功、失败次数等)
- final CacheLoader<? super K, V> defaultLoader:默认的缓存加载器
LocalCache构造入口如下:
LocalCache(CacheBuilder<? super K, ? super V> builder, @Nullable CacheLoader<? super K, V> loader)
其中,builder就是通过CacheBuilder创建的实例,这个在上面的小节中已经讲解了,下面看一下LocalCache初始化部分的代码:
LocalCache( CacheBuilder<? super K, ? super V> builder, @Nullable CacheLoader<? super K, V> loader) { //并发程度,根据我们传的参数和默认最大值中选取小者。 //如果没有指定该参数的情况下,CacheBuilder将其置为UNSET_INT即为-1 //getConcurrencyLevel方法获取时,如果为-1就返回默认值4 //否则返回用户传入的参数 concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS); //键值的引用类型,没有指定的话,默认为强引用类型 keyStrength = builder.getKeyStrength(); valueStrength = builder.getValueStrength(); //判断相同的方法,强引用类型就是Equivalence.equals() keyEquivalence = builder.getKeyEquivalence(); valueEquivalence = builder.getValueEquivalence(); maxWeight = builder.getMaximumWeight(); weigher = builder.getWeigher(); expireAfterAccessNanos = builder.getExpireAfterAccessNanos(); expireAfterWriteNanos = builder.getExpireAfterWriteNanos(); refreshNanos = builder.getRefreshNanos(); //移除消息监听器 removalListener = builder.getRemovalListener(); //如果我们指定了移除消息监听器的话,会创建一个队列,临时保存移除的内容 removalNotificationQueue = (removalListener == NullListener.INSTANCE) ? LocalCache.<RemovalNotification<K, V>>discardingQueue() : new ConcurrentLinkedQueue<RemovalNotification<K, V>>(); ticker = builder.getTicker(recordsTime()); //创建新的缓存内容(entry)的工厂,会根据引用类型选择对应的工厂 entryFactory = EntryFactory.getFactory(keyStrength, usesAccessEntries(), usesWriteEntries()); globalStatsCounter = builder.getStatsCounterSupplier().get(); defaultLoader = loader; //初始化缓存容量,默认为16 int initialCapacity = Math.min(builder.getInitialCapacity(), MAXIMUM_CAPACITY); if (evictsBySize() && !customWeigher()) { initialCapacity = Math.min(initialCapacity, (int) maxWeight); } // Find the lowest power-of-two segmentCount that exceeds concurrencyLevel, unless // maximumSize/Weight is specified in which case ensure that each segment gets at least 10 // entries. The special casing for size-based eviction is only necessary because that eviction // happens per segment instead of globally, so too many segments compared to the maximum size // will result in random eviction behavior. int segmentShift = 0; int segmentCount = 1; //根据并发程度来计算segement数组的大小(大于等于concurrencyLevel的最小的2的幂,这里即为4) while (segmentCount < concurrencyLevel && (!evictsBySize() || segmentCount * 20 <= maxWeight)) { ++segmentShift; segmentCount <<= 1; } //这里的segmentShift和segmentMask用来打散entry,让缓存内容尽量均匀分布在每个segment下 this.segmentShift = 32 - segmentShift; segmentMask = segmentCount - 1; //这里进行初始化segment数组,大小即为4 this.segments = newSegmentArray(segmentCount); //每个segment的容量,总容量/segment的大小,向上取整,这里就是16/4=4 int segmentCapacity = initialCapacity / segmentCount; if (segmentCapacity * segmentCount < initialCapacity) { ++segmentCapacity; } //这里计算每个Segment[i]下的table的大小 int segmentSize = 1; //SegmentSize为小于segmentCapacity的最大的2的幂,这里为4 while (segmentSize < segmentCapacity) { segmentSize <<= 1; } //初始化每个segment[i] //注:根据权重的方法使用较少,这里走else分支 if (evictsBySize()) { // Ensure sum of segment max weights = overall max weights long maxSegmentWeight = maxWeight / segmentCount + 1; long remainder = maxWeight % segmentCount; for (int i = 0; i < this.segments.length; ++i) { if (i == remainder) { maxSegmentWeight--; } this.segments[i] = createSegment(segmentSize, maxSegmentWeight, builder.getStatsCounterSupplier().get()); } } else { for (int i = 0; i < this.segments.length; ++i) { this.segments[i] = createSegment(segmentSize, UNSET_INT, builder.getStatsCounterSupplier().get()); } } }
到这里缓存就初始化完成了。
下面我们看一下Segment的定义,实现上跟ConcurrentHashMap的原理很像,因此不作详细介绍。具体可以看看ConcurrentHashMap的实现源码。
static class Segment<K, V> extends ReentrantLock { final LocalCache<K, V> map; /** * The number of live elements in this segment‘s region. */ volatile int count; /** * The weight of the live elements in this segment‘s region. */ @GuardedBy("this") long totalWeight; /** * Number of updates that alter the size of the table. This is used during bulk-read methods to * make sure they see a consistent snapshot: If modCounts change during a traversal of segments * loading size or checking containsValue, then we might have an inconsistent view of state * so (usually) must retry. */ int modCount; /** * The table is expanded when its size exceeds this threshold. (The value of this field is * always {@code (int) (capacity * 0.75)}.) */ int threshold; /** * The per-segment table. */ volatile AtomicReferenceArray<ReferenceEntry<K, V>> table; /** * The maximum weight of this segment. UNSET_INT if there is no maximum. */ final long maxSegmentWeight; /** * The key reference queue contains entries whose keys have been garbage collected, and which * need to be cleaned up internally. */ final ReferenceQueue<K> keyReferenceQueue; /** * The value reference queue contains value references whose values have been garbage collected, * and which need to be cleaned up internally. */ final ReferenceQueue<V> valueReferenceQueue; /** * The recency queue is used to record which entries were accessed for updating the access * list‘s ordering. It is drained as a batch operation when either the DRAIN_THRESHOLD is * crossed or a write occurs on the segment. */ final Queue<ReferenceEntry<K, V>> recencyQueue; /** * A counter of the number of reads since the last write, used to drain queues on a small * fraction of read operations. */ final AtomicInteger readCount = new AtomicInteger(); /** * A queue of elements currently in the map, ordered by write time. Elements are added to the * tail of the queue on write. */ @GuardedBy("this") final Queue<ReferenceEntry<K, V>> writeQueue; /** * A queue of elements currently in the map, ordered by access time. Elements are added to the * tail of the queue on access (note that writes count as accesses). */ @GuardedBy("this") final Queue<ReferenceEntry<K, V>> accessQueue; /** Accumulates cache statistics. */ final StatsCounter statsCounter; }
注意到其中有几个队列,keyReferenceQueue和valueReferenceQueue,在弱引用或软引用情况下gc回收的内容会放入这两个队列,accessQueue,用来进行LRU替换算法,recencyQueue记录哪些entry被访问,用于accessQueue的更新。
各种缓存的核心操作无外乎put/get/remove等。下面我们先抛开统计、LRU等,重点关注Guava Cache的put、get方法的实现。
下面是get方法的源码:
@Override public V get(K key) throws ExecutionException { return localCache.getOrLoad(key); } V getOrLoad(K key) throws ExecutionException { return get(key, defaultLoader); } V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException { //这里对哈希再哈希(Wang/Jenkins方法,为了进一步降低冲突)的细节暂时不讲,重点关注后面的get方法 int hash = hash(checkNotNull(key)); //根据hash找到对应的那个segment return segmentFor(hash).get(key, hash, loader); } Segment<K, V> segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } V get(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException { //key和loader不能为null(空指针异常) checkNotNull(key); checkNotNull(loader); try { //count保存的是该sengment中缓存的数量,如果为0,就直接去载入 if (count != 0) { // read-volatile // don‘t call getLiveEntry, which would ignore loading values ReferenceEntry<K, V> e = getEntry(key, hash); //e != null说明缓存中已存在 if (e != null) { long now = map.ticker.read(); //getLiveValue在entry无效、过期、正在载入都会返回null,如果返回不为空,就是正常命中 V value = getLiveValue(e, now); if (value != null) { recordRead(e, now); //性能统计 statsCounter.recordHits(1); //根据用户是否设置距离上次访问或者写入一段时间会过期,进行刷新或者直接返回 return scheduleRefresh(e, key, hash, value, now, loader); } ValueReference<K, V> valueReference = e.getValueReference(); if (valueReference.isLoading()) { //如果正在加载中,等待加载完成获取 return waitForLoadingValue(e, key, valueReference); } } } //如果不存在或者过期,就通过loader方法进行加载 return lockedGetOrLoad(key, hash, loader); } catch (ExecutionException ee) { Throwable cause = ee.getCause(); if (cause instanceof Error) { throw new ExecutionError((Error) cause); } else if (cause instanceof RuntimeException) { throw new UncheckedExecutionException(cause); } throw ee; } finally { //清理。通常情况下,清理操作会伴随写入进行,但是如果很久不写入的话,就需要读线程进行完成 //那么这个“很久”是多久呢?还记得前面我们设置了一个参数DRAIN_THRESHOLD=63吧 //而我们的判断条件就是if ((readCount.incrementAndGet() & DRAIN_THRESHOLD) == 0) //条件成立,才会执行清理,也就是说,连续读取64次就会执行一次清理操作 //具体是如何清理的,后面再介绍,这里仅关注核心流程 postReadCleanup(); } }
说明:一般缓存的get方法会去查找指定的key对应的value,如果不存在就直接返回null或者抛出异常,如OSCache就是抛出一个缓存需要刷新的异常,让用户进行put操作,Guava Cache这样的处理很有意思,在get获取不到或者过期的话,会通过我们提供的load方法将entry主动加载到缓存中来。
下面是get方法的核心源码,大部分说明都在注释中:
V lockedGetOrLoad(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException { ReferenceEntry<K, V> e; ValueReference<K, V> valueReference = null; LoadingValueReference<K, V> loadingValueReference = null; boolean createNewEntry = true; //加锁 lock(); try { // re-read ticker once inside the lock long now = map.ticker.read(); preWriteCleanup(now); int newCount = this.count - 1; //当前segment下的HashTable AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table; //这里也是为什么table的大小要为2的幂(最后index范围刚好在0-table.length()-1) int index = hash & (table.length() - 1); ReferenceEntry<K, V> first = table.get(index); //在链表上查找 for (e = first; e != null; e = e.getNext()) { K entryKey = e.getKey(); if (e.getHash() == hash && entryKey != null && map.keyEquivalence.equivalent(key, entryKey)) { valueReference = e.getValueReference(); //如果正在载入中,就不需要创建,只需要等待载入完成读取即可 if (valueReference.isLoading()) { createNewEntry = false; } else { V value = valueReference.get(); // 被gc回收(在弱引用和软引用的情况下会发生) if (value == null) { enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED); } else if (map.isExpired(e, now)) { // 过期 enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED); } else { //存在并且没有过期,更新访问队列并记录命中信息,返回value recordLockedRead(e, now); statsCounter.recordHits(1); // we were concurrent with loading; don‘t consider refresh return value; } // 对于被gc回收和过期的情况,从写队列和访问队列中移除 // 因为在后面重新载入后,会再次添加到队列中 writeQueue.remove(e); accessQueue.remove(e); this.count = newCount; // write-volatile } break; } } if (createNewEntry) { //先创建一个loadingValueReference,表示正在载入 loadingValueReference = new LoadingValueReference<K, V>(); if (e == null) { //如果当前链表为空,先创建一个头结点 e = newEntry(key, hash, first); e.setValueReference(loadingValueReference); table.set(index, e); } else { e.setValueReference(loadingValueReference); } } } finally { //解锁 unlock(); //执行清理 postWriteCleanup(); } if (createNewEntry) { try { // Synchronizes on the entry to allow failing fast when a recursive load is // detected. This may be circumvented when an entry is copied, but will fail fast most // of the time. synchronized (e) { //异步加载 return loadSync(key, hash, loadingValueReference, loader); } } finally { //记录未命中 statsCounter.recordMisses(1); } } else { // 等待加载进来然后读取即可 return waitForLoadingValue(e, key, valueReference); } }
下面是异步载入的代码:
V loadSync(K key, int hash, LoadingValueReference<K, V> loadingValueReference, CacheLoader<? super K, V> loader) throws ExecutionException { //这里通过我们重写的load方法,根据key,将value载入 ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader); return getAndRecordStats(key, hash, loadingValueReference, loadingFuture); } //等待载入,并记录载入成功或失败 V getAndRecordStats(K key, int hash, LoadingValueReference<K, V> loadingValueReference, ListenableFuture<V> newValue) throws ExecutionException { V value = null; try { value = getUninterruptibly(newValue); if (value == null) { throw new InvalidCacheLoadException("CacheLoader returned null for key " + key + "."); } //性能统计信息记录载入成功 statsCounter.recordLoadSuccess(loadingValueReference.elapsedNanos()); //这个方法才是真正的将缓存内容加载完成(当前还是loadingValueReference,表示isLoading) storeLoadedValue(key, hash, loadingValueReference, value); return value; } finally { if (value == null) { statsCounter.recordLoadException(loadingValueReference.elapsedNanos()); removeLoadingValue(key, hash, loadingValueReference); } } } boolean storeLoadedValue(K key, int hash, LoadingValueReference<K, V> oldValueReference, V newValue) { lock(); try { long now = map.ticker.read(); preWriteCleanup(now); int newCount = this.count + 1; if (newCount > this.threshold) { // ensure capacity expand(); newCount = this.count + 1; } AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table; int index = hash & (table.length() - 1); ReferenceEntry<K, V> first = table.get(index); //找到 for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) { K entryKey = e.getKey(); if (e.getHash() == hash && entryKey != null && map.keyEquivalence.equivalent(key, entryKey)) { ValueReference<K, V> valueReference = e.getValueReference(); V entryValue = valueReference.get(); // replace the old LoadingValueReference if it‘s live, otherwise // perform a putIfAbsent if (oldValueReference == valueReference || (entryValue == null && valueReference != UNSET)) { ++modCount; if (oldValueReference.isActive()) { RemovalCause cause = (entryValue == null) ? RemovalCause.COLLECTED : RemovalCause.REPLACED; enqueueNotification(key, hash, oldValueReference, cause); newCount--; } //LoadingValueReference变成对应引用类型的ValueReference,并进行赋值 setValue(e, key, newValue, now); //volatile写入 this.count = newCount; // write-volatile evictEntries(); return true; } // the loaded value was already clobbered valueReference = new WeightedStrongValueReference<K, V>(newValue, 0); enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED); return false; } } ++modCount; ReferenceEntry<K, V> newEntry = newEntry(key, hash, first); setValue(newEntry, key, newValue, now); table.set(index, newEntry); this.count = newCount; // write-volatile evictEntries(); return true; } finally { unlock(); postWriteCleanup(); } }
至此,Guava Cache从get以及put的核心部分已经分析完了。关于其余的部分细节以及各个数据结构的具体实现,可以好好研读源码,本文主要理通总体流程,分析其实现原理。
OSCache和Guava Cache在实现上有很大不同,但二者都是非常优秀的本地缓存框架,认真学习它们的实现原理和源码,对开发是大有裨益的。我们对其进行一下简要的对比:
- OSCache和Guava Cache底层都是HashTable,但是二者又是不同的。OSCache对原有HashTable进行了扩展,在get方法上是没有加锁的,而是通过其他措施进行并发安全控制,因此读性能大幅度提高;Guava Cache也是对HashTable进行了扩展,原理类似于ConcurrentHashMap,通过分离锁等实现线程安全的同时,读写性能都大大提高,尤其在写上,也是可以并发的。
- OSCache在get方法时,如果缓存过期或者不存在,会抛出需要刷新的异常,用户需要通过put方法进行刷新缓存,否则会发生死锁;而Guava Cache在get的时候,会通过用户重载的load方法,自动进行加载,十分方便。