BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]

Description

有n朵花,每朵花有三个属性:花形(s)、颜色(c)、气味(m),又三个整数表示。现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量。定义一朵花A比另一朵花B要美丽,当且仅当Sa>=Sb,Ca>=Cb,Ma>=Mb。显然,两朵花可能有同样的属性。需要统计出评出每个等级的花的数量。

Input

第一行为N,K (1 <= N <= 100,000, 1 <= K <= 200,000 ), 分别表示花的数量和最大属性值。

以下N行,每行三个整数si, ci, mi (1 <= si, ci, mi <= K),表示第i朵花的属性

Output

包含N行,分别表示评级为0...N-1的每级花的数量。


$fuck$太坑了!!!!!!!!!

各种修改比较操作各种修改细节最后发现是因为我去重之后把$n$改变了然而人家输出需要原来的$n$!!!!!!!!!!!!!!!!!

裸的三维偏序

$a$排序,$b$ $CDQ$分治,$c$树状数组

注意需要去重

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=2e5+5;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();}
    while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();}
    return x*f;
}
int n,maxVal;
struct Operation{
    int a,b,c,w;
    int f;
    bool operator <(const Operation &r)const{
        //return a<r.a || (a==r.a&&b<r.b) || (a==r.a&&b==r.b&&c<r.c);
        return (a==r.a&&b==r.b) ? c<r.c : (a==r.a?b<r.b:a<r.a);
    }
}a[N],t[N];
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p,int v){for(;p<=maxVal;p+=lowbit(p)) c[p]+=v;}
inline int sum(int p){
    int re=0;
    for(;p;p-=lowbit(p)) re+=c[p];
    return re;
}
int ans[N];
void CDQ(int l,int r){
    if(l==r) return;
    int mid=(l+r)>>1;
    CDQ(l,mid);CDQ(mid+1,r);
    int i=l,j=mid+1,p=l;
    while(i<=mid||j<=r){
        if(j>r||(i<=mid&&a[i].b<=a[j].b)) add(a[i].c,a[i].w),t[p++]=a[i++];
        else a[j].f+=sum(a[j].c),t[p++]=a[j++];
    }
    for(int i=l;i<=mid;i++) add(a[i].c,-a[i].w);
    for(int i=l;i<=r;i++) a[i]=t[i];
}
int main(){
    freopen("in","r",stdin);
    n=read();maxVal=read();
    for(int i=1;i<=n;i++)
        a[i].a=read(),a[i].b=read(),a[i].c=read(),a[i].w=1;
    sort(a+1,a+1+n);

    int p=1;
    for(int i=2;i<=n;i++){
        if(a[i].a==a[p].a&&a[i].b==a[p].b&&a[i].c==a[p].c) a[p].w++;
        else a[++p]=a[i];
    }
    int nnnnn=n;
    n=p;

    CDQ(1,n);
    for(int i=1;i<=n;i++) ans[a[i].f+a[i].w-1]+=a[i].w;
    for(int i=0;i<=nnnnn-1;i++) printf("%d\n",ans[i]);
}


时间: 2024-10-06 12:25:40

BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]的相关文章

BZOJ3262/洛谷P3810 陌上花开 CDQ分治 三维偏序 树状数组

原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 落谷P3810 题意 有$n$个元素,第$i$个元素有$a_i$.$b_i$.$c_i$三个属性,设$f(i)$表示满足$a_j\leq a_i$且$b_j\leq b_i$且$c_j\leq c_i$的$j$的数量.对于$d\in [0,n)$,求$f(i)=d$的数量. $n\leq 100000,max\{a_i,b_i,c_i|i

BZOJ 3262: 陌上花开 cdq分治 树状数组

https://www.lydsy.com/JudgeOnline/problem.php?id=3262 cdq分治板子题,一维排序,一维分治(cdq里的队列),一维数据结构(树状数组). 学dp优化前来复习--以前好像写过这道题但是没写博客啊--在校oj上写的题都没怎么写博客,追悔莫及 1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cstring> 5 #

bzoj 3262: 陌上花开 -- CDQ分治

3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MB Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa>=Sb,Ca>=Cb,Ma>=Mb.显然,两朵花可能有同样的属性.需要统计出评出每个等级的花的数量. Input 第一行为N,K (1 <= N <= 100,00

【算法】CDQ分治 -- 三维偏序 &amp; 动态逆序对

初次接触CDQ分治,感觉真的挺厉害的. 整体思路即分而治之,再用之前处理出来的答案统计之后的答案. 大概流程是: 对于区间 l ~ r : 1.处理 l ~mid, mid + 1 ~ r 的答案 2.分别排序规整 3.计算 l ~ mid 中每一个数对 mid + 1 ~ r 中的答案的贡献, 累加 4.得到区间l ~ r的答案 CDQ分治我一共也才做了两道题目, 就一起整理在这里了.大体都差不多,CDQ+树状数组分别维护两个维度. 1.三维偏序 #include <bits/stdc++.h

CDQ分治 三维偏序

这应该是一道CDQ分治的入门题目 我们知道,二维度的偏序问题直接通过,树状数组就可以实现了,但是三维如何实现呢? 我记得以前了解过一个小故事,应该就是分治的. 一个皇帝,想给部下分配任务,但是部下太多,他也无从下手于是他这个任务分给宰相,宰相也不怎么清楚,于是他又分给他的手下,这么一直分啊分啊,分到每一个人头顶上的时候 每个人知道自己要干什么,于是他把它的信息交给他的上级,上级有了这些数据后,他处理了交给他的上级...这么一直交啊...国王最后成功的分配这些任务. CDQ分治也是一样,在这里,首

BZOJ.1935.[SHOI2007]Tree园丁的烦恼(CDQ分治 三维偏序)

题目链接 矩形查询可以拆成四个点的前缀和查询(树套树显然 但是空间不够) 每个操作表示为(t,x,y),t默认有序,对x分治,y用树状数组维护 初始赋值需要靠修改操作实现. //119964kb 4380ms #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar() #define lb(x) (x)&-(x) const int N=5e5+5; int n,

COGS 2479. [HZOI 2016]偏序 [CDQ分治套CDQ分治 四维偏序]

传送门 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于100%的数据,1<=n<=50000,保证所有的ai.bi.ci分别组成三个1~n的排列. $CDQ$分治套$CDQ$分治也不是很难嘛 对于本题,设四维$a,b,c,d$ $Sort\ at\ a$ $CDQ(l,r)$ $\quad CDQ(l,mid)$ $\quad CDQ(mid+1,r)$ $\

luogu3810 陌上花开 (cdq分治)

求三维偏序 设三维为a,b,c.先对a排序,这样i的偏序就只能<i. 然而排序的时候需要三个维度都判断一遍,最后还要去重,不然会出现实际应该记答案的数出现在它后面的情况. (排序用的函数里不要写类似于<=之类的东西啊..会出奇奇怪怪的问题的(RE)) 然后分治来做,我们在做区间[l,r]的时候,先去做[l,m]和[m+1,r] 之后左区间[l,m],右区间[m+1,r]都已经按照b排好序了,而且左右两区间内部的答案已经统计过了,所以现在只要考虑左区间中满足(右区间的数)的数量就好了. 那么就也

P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)

P3157 [CQOI2011]动态逆序对 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数. 输入格式 输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数.以下n行每行包含一个1到n之间的正整数,即初始排列.以下m行每行一个正整数,依次为每次删除的元素. 输出格式 输出包含m行,依次为删除每个元素之前,逆序对的个数. 输入输出样例 输入