【微积分】 04 - 一元积分

1. 不定积分

1.1 原函数和不定积分

  前面的微分学讨论了导数对函数局部值的影响,现在开始就来看看整体的导函数能确定怎样的函数?换句话说,已知导函数的情况下,能否确定函数本身。对于不是处处有定义的导函数,为了简单起见,可以把它拆分成多个区间讨论。为此,对于区间\(I\)上处处有定义的导函数\(f(x)\),如果存在函数满足\(F‘(x)=f(x)\),那么\(F(x)\)称为\(f(x)\)的原函数

  前面我们已经知道,区间上导函数相同的函数之间只相差一个常数,从而如果原函数\(F(x)\)存在,任意原函数可表示为\(F(x)+C\)。全体原函数也称为\(f(x)\)的不定积分,记作\(\int f(x)\,\text{d}x\),可以写成式(1)。积分符号表示了导数的累积,它的意义将在定积分中看得很清楚。求原函数的过程称为积分,它与微分(求导)是逆运算,根据导数公式可以得到相应的积分公式。

\[\int f(x)\,\text{d}x=F(x)+C,\quad(C\in\Bbb{R})\tag{1}\]

\(f(x)\) \(\int f(x)\,\text{d}x\)
\(0\),  \(1\) \(C\),  \(x+C\)
\(x^{\mu}\,(\mu\ne -1)\),  \(\dfrac{1}{x}\) \(\dfrac{1}{\mu+1}x^{\mu+1}\),\(\ln{|x|}+C\)
\(\dfrac{1}{1+x^2}\),  \(\dfrac{1}{\sqrt{1-x^2}}\)
\(\arctan{x}+C=-\text{arccot}\,{x}+C\),

\(\arcsin{x}+C=-\arccos{x}+C\)

\(a^x\),  \(e^x\) \(\dfrac{1}{\ln{a}}a^x\),  \(e^x+C\)
\(\sin{x}\),  \(\cos{x}\) \(-\cos{x}+C\),  \(\sin{x}+C\)
\(\dfrac{1}{\sin^2{x}}\),  \(\dfrac{1}{\cos^2{x}}\) \(-\cot{x}+C\),  \(\tan{x}+C\)
\(\sinh{x}\),  \(\cosh{x}\) \(\cosh{x}+C\),  \(\sinh{x}+C\)
\(\dfrac{1}{\sinh^2{x}}\),  \(\dfrac{1}{\cosh^2{x}}\) \(-\coth{x}+C\),  \(\tanh{x}+C\)

1.2 积分的方法

  针对组合函数的求导,前面给出了一些公式,这里相应地给出积分的方法。首先,对于常量乘和加减法,容易有(2)式成立,将函数进行拆解积分是最常用的方法。利用导数的乘法公式,容易有式(3)成立,这个方法也叫分部积分法。分部积分法中,往往函数分为两部分,其中一部分容易求积,而另一部分的导数比较简单,这样整个式子就可以化简。另外,分部积分有时还能推导出积分方程或递推函数,这些结论都能间接地求得积分。

\[\int [\,af(x)+bg(x)\,]\,\text{d}x=a\int f(x)\,\text{d}x+b\int g(x)\,\text{d}x\tag{2}\]

\[\int u(x)\,\text{d}v(x)=u(x)v(x)-\int v(x)\,\text{d}u(x)\tag{3}\]

   求积分:\(\int\ln{x}\,\text{d}x\)、\(\int x\sin{x}\,\text{d}x\);

   求积分:\(\int e^x\sin{x}\,\text{d}x\)、\(\int \dfrac{1}{(x^2+1)^n}\,\text{d}x\)。

  根据复合函数的求导公式,如果\(f(x)\)在\(I\)上有原函数,可以有式(3)成立,它被称为换元积分法。之前定义中,积分符号\(\int\,\text{d}x\)是一个整体,式(4)则说明\(\text{d}x\)也可以作为微分符号自由使用。换元法看似简单,但使用中却经常需要很强的技巧和丰富的经验,大量的习题锻炼是必不可少的。

\[\int f(\varphi(t))\varphi‘(t)\,\text{d}t=\int f(x)\,\text{d}x,\quad(x=\varphi(x))\tag{4}\]

  但要注意,公式(4)的使用可以是两个方向的,从左向右的拼凑称为第一换元法,反过来叫第二换元法。第一换元法中比较常见的就是\(x=at+b\)的情况(式(5)),有些简单的积分甚至应该作为结论记住。第二换元法常见于函数可以通过参数化\(x=\varphi(t)\)来简化,且\(f(\varphi(t))\varphi‘(t)\)有比较简单的形式,熟悉三角函数公式将非常有利。

\[\int f(at+b)\,\text{d}t=\dfrac{1}{a}\int f(x)\,\text{d}x\tag{5}\]

   求积分:\(\int\dfrac{1}{a^2+t^2}\,\text{d}t\)、\(\int\dfrac{1}{a^2-t^2}\,\text{d}t\)、\(\int\tan{t}\,\text{d}t\)、\(\int\dfrac{1}{\sin{t}}\,\text{d}t\);

   求积分:\(\int\sqrt{a^2-x^2}\,\text{d}x\)、\(\int\dfrac{1}{(x^2+a^2)^2}\,\text{d}x\)、\(\int\dfrac{1}{\sqrt{x^2+\alpha}}\,\text{d}x\)。

1.3 特殊类型的积分

1.3.1 有理分式

  对于某些形式的函数,已经有了统一的求积方案,这里举一些例子。由多项式\(P(x),Q(x)\)组成的方式\(\dfrac{P(x)}{Q(x)}\)称为有理分式,我们当然只需要解决\(P(x)\)的次数小于\(Q(x)\)的情况(称为真分式)。由之前的代数知识可知,在实数域中多项式总可以分解为一次项和二次项之积,从而真分式总可以分解为式(6)中的两种简单分式,他们也被称为最简分式部分分式。分解的时候可以用待定系数法解方程组,确定系数的过程中先用\(x=a\)带入可以加速计算过程。

\[\dfrac{A}{(x-a)^k};\quad\dfrac{Ax+B}{(x^2+px+q)^k},\:(p^2-4q<0)\tag{6}\]

  式(6)中\(\dfrac{A}{(x-a)^k}\)很容易求积分,\(\dfrac{Ax}{(x^2+px+q)^k}\)使用\(x=t-\dfrac{p}{2}\)换元也很容易解决。如果你做了前面的习题,可以得到\(\dfrac{B}{(x^2+px+q)^k}\)的递推公式,所以任何有理分式都可以按步骤积分。

  仔细研究积分的具体过程,其实还能发现积分式总可以分解为有理分式部分和其它部分(式(7)),其中\(Q(x)=\prod(x-a_i)^{m_i}\prod(x^2+p_jx+q_j)^{n_j}\),\(Q_2(x)=\prod(x-a_i)\prod(x^2+p_jx+q_j)\)且\(Q_1(x)=\dfrac{Q(x)}{Q_2(x)}\)。基于这个结论,也可以用待定系数法加速求解。

\[\int\dfrac{P(x)}{Q(x)}\,\text{d}x=\dfrac{P_1(x)}{Q_1(x)}+\int\dfrac{P_2(x)}{Q_2(x)}\,\text{d}x\tag{7}\]

1.3.2 三角有理分式

  还有一种常见的函数,它是由三角函数组成的有理分式,由于每个三角函数都可以表示为\(\sin{x},\cos{x}\)的有理分式,故这些函数都是\(\sin{x},\cos{x}\)的有理分式\(R(\sin{x},\cos{x})\)。设\(t=\tan{\dfrac{x}{2}}\),由万能公式可知式(8)成立,从而使用换元法可将原积分转化为一般的有理分式。

\[\sin{x}=\dfrac{2t}{1+t^2};\quad\cos{x}=\dfrac{1-t^2}{1+t^2};\quad\text{d}x=\dfrac{2\,\text{d}t}{1+t^2}\tag{8}\]

  但对于一些特殊情况,还是可以通过其它换元法简化积分的。比如如果\(R(-\sin{x},\cos{x})=-R(\sin{x},\cos{x})\),则\(\dfrac{R(\sin{x},\cos{x})}{\sin{x}}\)必定具有形式\(R‘(\cos^2{x},\sin{x})\)。也就是说\(R(\sin{x},\cos{x})=R‘‘(\cos{x}\sin{x})\),使用\(t=\cos{x}\)换元即把问题转化成\(-R‘‘(t)\)的积分。同样的方法可以应用于\(R(\sin{x},-\cos{x})=-R(\sin{x},\cos{x})\)的场景。

  如果\(R(-\sin{x},-\cos{x})=R(\sin{x},\cos{x})\),易知\(R(\sin{x},\cos{x})=R‘(\sin^2{x},\cos^2{x})\),这两个都能转化为\(\tan{x}\)的有理分式。令\(t=\tan{x}\)则有\(\text{d}x=\dfrac{\text{d}t}{1+t^2}\),所以原积分可以转化为\(R‘‘(t)\)的积分。

   求积分:\(\int\sin^4{x}\cos^5{x}\,\text{d}x\),\(\int\dfrac{\sin^4{x}}{\cos^2{x}}\,\text{d}x\)。

1.3.3 一些根式函数

  对于一些带根式的函数,通过适当的换元法,也可以达到消除根式的目的。比如对于式(9),设\(r,\cdots,s\)分母的最小公倍数为\(n\),则只需做换元\(t=\sqrt[n]{\dfrac{ax+b}{cx+d}}\)即可转化为\(t\)的有理分式。\(x^r(ax^s+b)^p\)通常被称为二项式微分,其中\(r,s,p\)为有理数且\(a,b\ne 0\),使用\(t=x^s\)换元可得是(10)。易证如果\(p,q,p+q\)中有一个为整数,式(10)都可以转化为式(9)的类型。切比雪夫还证明了,除了这三种情况外,积分都不能用初等函数表示。

\[R[\,x,(\dfrac{ax+b}{cx+d})^r,\cdots,(\dfrac{ax+b}{cx+d})^s\,],\quad(r,s\in\Bbb{Q})\tag{9}\]

\[\int x^r(ax^s+b)^p\,\text{d}x=\dfrac{1}{s}\int t^q(at+b)^p\,\text{d}x,\quad(p=\dfrac{r+1}{s}-1)\tag{10}\]

  还有一类根式函数是\(R(x,\sqrt{ax^2+bx+c})\),对它的处理关键在于寻找参数\(t\)使得\(x,\sqrt{ax^2+bx+c}\)都是\(t\)的有理分式。当\(a>0\)时令\(\sqrt{ax^2+bx+c}=t-\sqrt{a}x\),当\(c>0\)时令\(\sqrt{ax^2+bx+c}=tx+\sqrt{c}\),当\(ax^2+bx+c=a(x-x_1)(x-x_2)\)时令\(\sqrt{ax^2+bx+c}=t(x-x_i)\)。显然,这三种代换都能达到目的,它们被称为欧拉代换

2. 定积分

2.1 定积分的定义

  导数是函数在局部的趋势,我们想知道,一个导函数能否确定函数的整个走势?存在不定积分的导函数当然满足条件,但还是没有回答,导函数究竟要满足怎样的条件。设导函数\(f(x)\)定义在\([a,b]\)上,且原函数\(F(x)\)有个起始值\(F(a)\),为了逼近函数的走向,可以将\([a,b]\)分割为\(n\)小块,分割点为\(a=x_0,x_1,\cdots,x_{n-1},x_n=b\),并记\(\varDelta x_i=(x_{i+1}-x_i)\)。如果分的块足够小,感觉可以用\(F(a)+\sum\limits_{i=0}^{n-1}f(x_i)\varDelta x_i\)来近似\(F(b)\)。

  你可能注意到,上式中的累加部分也可以做为函数\(f(x)\)在\([a,b]\)间的近似面积,对它的研究比较重要。其实历史上定积分的概念,就是从计算图形面积中引出的,它比微分的概念还要早。所以我们完全有必要将它作为独立的问题来研究,之后再回头看它跟导数的关系。再将问题重新描述一下,对\([a,b]\)上的任意函数\(f(x)\),作任意分割\(\pi\),任取\(\xi_i\in [x_i,x_{i+1}]\)并记\(\lambda=\max{(x_{i+1}-x_i)}\),考察式(11)的和数。

\[\sigma=\sum\limits_{i=0}^{n-1}f(\xi_i)\varDelta x_i\tag{11}\]

  如果以式(11)作为区间面积或\(F(b)-F(a)\)的近似值,必须要求无论\(\pi\)和\(\xi\)如何选取,在\(\lambda\to 0\)时\(\sigma\)趋于固定值\(I\)。用\(\varepsilon\)-\(\delta\)语言描述就是,对任意\(\varepsilon>0\)都存在\(\delta>0\),使得\(\lambda<\delta\)时总有\(|\sigma-I|<\varepsilon\)。这时也说\(I\)是\(\sigma\)的极限(与之前的极限不同),并称\(f(x)\)在\([a,b]\)上可积,\(I\)为其定积分,记作式(12)。另外,\(\sigma\)被称为积分和,\(a,b\)称为积分的下限上限

\[\lim_{\lambda\to 0}{\sigma}=I\quad\Leftrightarrow\quad\int_{a}^{b}{f(x)}\,\text{d}x=I\tag{12}\]

  定积分可以作为面积的一种定义,但它的合理性还需要检验(兼容规则图形面积的定义),而且它的值是否等于\(F(b)-F(a)\)还未确定。这种积分比较复合直观感觉,它由黎曼提出,因此也叫黎曼积分,相应地有黎曼可积黎曼和等概念,与这里的定义等价。并不是所有函数都是可积的,比如狄利克雷函数(有理数为\(1\)其它为\(0\)),再比如没有上界或下界的函数,从而可积函数必有限。

2.2 定积分的性质

  为讨论可积的条件,这里先介绍另一个更常用的工具。记\(m_i,M_i\)为\(f(x)\)在\([x_i,x_{i+1}]\)上的上下、上确界,并称式(13)为达布下和达布上和,显然有\(s\leqslant\sigma\leqslant S\)。如果\(s,S\)来自不同的分割,合并这些分割,容易看出总有\(s\leqslant S\)。这就说明对任何分割\(s,S\)分别有上界和下界,如果它们的确界相等即\(S-s\to 0\),则\(f(x)\)可积。反之显然成立,从而\(f(x)\)可积的充要条件是\(S-s\to 0\)。

\[s=\sum\limits_{i=0}^{n-1}f(m_i)\varDelta x_i;\quad S=\sum\limits_{i=0}^{n-1}f(M_i)\varDelta x_i\tag{13}\]

  根据以上结论,可以比较容易地得出一些可积函数。如果\(f(x)\)连续,则在\([a,b]\)一致连续,容易证明它满足式(12),从而可积。进而可知,存在有限个间断点的有界函数也是可积的。同样利用式(12),可证单调有界函数可积。在已知可积的情况下,可以选择方便计算的分割方法。

  如果定义\(\int_{b}^{a}{f(x)}\,\text{d}x=-\int_{a}^{b}{f(x)}\,\text{d}x\),则不论\(a,b,c\)的大小如何,容易证明式(14)成立。当\(f(x),g(x)\)在\([a,b]\)上可积时,利用式(13)可证式(15)可积且公式成立,还容易证式(16)成立。如果\(f(x)\)可积,利用式(12)可以证明\(|f(x)|\)也可积,且根据式(16)可有式(17)成立。

\[\int_{a}^{c}{f(x)}\,\text{d}x=\int_{a}^{b}{f(x)}\,\text{d}x+\int_{b}^{c}{f(x)}\,\text{d}x\tag{14}\]

\[\int_{a}^{b}{[\,cf(x)+dg(x)\,]}\,\text{d}x=c\int_{a}^{b}{f(x)}\,\text{d}x+d\int_{a}^{b}{g(x)}\,\text{d}x\tag{15}\]

\[f(x)\geqslant g(x)\quad\Rightarrow\quad\int_{a}^{b}{f(x)}\,\text{d}x\geqslant\int_{a}^{b}{g(x)}\,\text{d}x\tag{16}\]

\[\int_{a}^{b}{|f(x)|}\,\text{d}x\geqslant\left|\int_{a}^{b}{f(x)}\,\text{d}x\right|\tag{17}\]

  设\(f(x),g(x)\)在\([a,b]\)上可积,\(m\leqslant f(x)\leqslant M\),如果\(g(x)\)不变号,则\(f(x)g(x)\)在\(mg(x),Mg(x)\)之间。也就是说\(\int_{a}^{b}{f(x)g(x)}\,\text{d}x\)在\(m\int_{a}^{b}{g(x)}\,\text{d}x\)和\(M\int_{a}^{b}{g(x)}\,\text{d}x\)之间,从而存在\(m\leqslant \mu\leqslant M\)使得式(18)左成立,取\(g(x)=1\)还有(18)右式成立。当\(f(x)\)连续时,由中值定理对应还有式(19)成立,这个结论被称为积分第一中值定理

\[\int_{a}^{b}{f(x)g(x)}\,\text{d}x=\mu\int_{a}^{b}{g(x)}\,\text{d}x;\quad\int_{a}^{b}{f(x)}\,\text{d}x=\mu(b-a)\tag{18}\]

\[\int_{a}^{b}{f(x)g(x)}\,\text{d}x=f(\xi)\int_{a}^{b}{g(x)}\,\text{d}x;\quad\int_{a}^{b}{f(x)}\,\text{d}x=f(\xi)(b-a)\tag{19}\]

2.3 定积分的计算

2.3.1 基本方法

  现在就来回答前面的问题:定积分能否作为面积的定义?它是否等于\(F(b)-F(a)\)?这两个问题都指向了定积分的值。设\(\Phi(x)=\int_{a}^xf(t)\,\text{d}t\),现在来研究值函数\(\Phi(x)\)的性质。首先对于任意\(x_0\in [a,b]\)领域,有式(20)成立。所以当\(x\to x_0\)时,由\(f(x)\)有界可知\(\Phi(x)\to\Phi(x_0)\),也就是说\(\Phi(x)\)是连续函数。如果\(f(x)\)在\(x_0\)还是连续的,则还有\(\dfrac{\Phi(x)-\Phi(x_0)}{x-x_0}\to f(x_0)\),所以\(\Phi(x)\)在\(x_0\)可导且\(\Phi‘(x_0)=f(x_0)\)。

\[\Phi(x)-\Phi(x_0)=\int_{x_0}^xf(t)\,\text{d}t=f(\xi)(x-x_0)\tag{20}\]

  如果\(f(x)\)是连续函数,上面的结论就是说\(\int_{a}^xf(t)\,\text{d}t\)是可微函数,且有式(21)成立。所以连续函数都存在原函数\(F(x)=\int_{a}^xf(t)\,\text{d}t+C\),并且有式(22)成立(最后是简写),这就回答了上面的问题。式(22)也叫牛顿-莱布尼兹公式,它把微分和积分完美地结合在了一起,由此也被称之为微积分基本公式。但要注意,该结论对\(f(x)\)不连续的场景不一定适用,以下默认\(f(x)\)连续。

\[\dfrac{\text{d}}{\text{d}x}\int_a^xf(t)\,\text{d}x=f(x)\tag{21}\]

\[\int_a^bf(x)\,\text{d}x=F(b)-F(a)=F(x)\left.\right|_a^b\tag{22}\]

  有了以上结论,就可以用换元法分部积分法来求定积分。如果\(\varphi(t)\)有连续导数(为保证积分存在),且\(\varphi(\alpha)=a,\varphi(\beta)=b\),则有式(23)成立。这个式子同样可以从两个方向使用,有时候它还可以起到变形化简的作用,尤其是在有三角函数的表达式中。

\[\int_a^bf(x)\,\text{d}x=\int_{\alpha}^{\beta}f(\varphi(t))\varphi‘(t)\,\text{d}t\tag{23}\]

   求定积分:\(\int_0^{\pi}\dfrac{x\sin{x}}{1+\cos^2{x}}\,\text{d}x\);(提示:拆分为两段,并对其中一个变形)

   设\(f(x)\)的周期为\(T\),求证:\(\int_a^{a+T}f(x)\,\text{d}x=\int_0^Tf(x)\,\text{d}x\)。

2.3.2 分部积分

  同样可以使用分部积分法,设\(u(x),v(x)\)有连续导数,则有式(23)成立。该式除了可以化简积分,有时还可以推导出方程式或递推式,间接地可以求得定积分。比如使用递推式可以求得式(24)定积分,用这个式子还能得出\(\pi\)的估算式。

\[\int_a^bu(x)\,\text{d}v(x)=[\,u(x)v(x)\,]\left.\right|_a^b-\int_a^bv(x)\,\text{d}x\tag{23}\]

\[I_m=\int_0^{\frac{\pi}{2}}\sin^m{x}\,\text{d}x=\int_0^{\frac{\pi}{2}}\cos^m{x}\,\text{d}x=\begin{cases}\dfrac{(2n-1)!!}{(2n)!!}\cdot\dfrac{\pi}{2},&(m=2n)\\\\\dfrac{(2n)!!}{(2n+1)!!},&(m=2n+1)\end{cases}\tag{24}\]

  分部积分还能帮我们得到乘法积分\(\int_a^bf(x)g(x)\,\text{d}x\)的另一种估算,问了能分部积分,先设\(g(x)\)连续、\(f(x)\)的导数连续,并令\(G(x)=\int_a^xg(x)\,\text{d}x\)。使用分部积分有式(25)成立,如果再令\(f(x)\)非负且\(f‘(x)\leqslant 0\),并记\(G(x)\)的最大(小)值为\(M\)(\(m\)),可以推导出\(\int_a^bf(x)g(x)\,\text{d}x\in [mf(a),Mf(a)]\)。再由\(G(x)\)的连续性可知存在\(\xi\in[a,b]\),使得式(26)左成立。如果\(f‘(x)\geqslant 0\),令\(G(x)=\int_x^bg(x)\,\text{d}x\),同样可证式(26)右成立。如果不限定\(f(x)\)的符号,可用\(f(x)-f(b)\geqslant 0\)代替\(f(x)\)(比如\(f‘(x)\leqslant 0\)),带入上面的结论整理可得式(27),式(26)(27)被称为积分第二中值定理

\[\int_a^bf(x)g(x)\,\text{d}x=f(b)G(b)-\int_a^bG(x)f‘(x)\,\text{d}x\tag{25}\]

\[\int_a^bf(x)g(x)\,\text{d}x=f(a)\int_a^{\xi}g(x)\,\text{d}x;\quad\int_a^bf(x)g(x)\,\text{d}x=f(b)\int_{\xi}^bg(x)\,\text{d}x\quad\tag{26}\]

\[\int_a^bf(x)g(x)\,\text{d}x=f(a)\int_a^{\xi}g(x)\,\text{d}x+f(b)\int_{\xi}^bg(x)\,\text{d}x\tag{27}\]

  最后我们用定积分来表示泰勒公式的余项,设\(f(x)\)在\(x_0\)领域内有直到\(n+1\)阶的连续导数,则有\(r(x_0)=r‘(x_0)=\cdots=r^{(n)}(x_0)=0\)和\(r^{(n+1)}(x)=f^{(n+1)}(x)\)。连续进行式(28)的推断,可以得到\(r(x)\)的精确表达式(29),它不再有不确定的成分。

\[r(x)=\int_{x_0}^xr‘(t)\,\text{d}t=\int_{x_0}^xr‘(t)\,\text{d}(t-x)=r‘(t)(t-x)\left.\right|_{x_0}^x-\int_{x_0}^xr‘‘(x)(t-x)\,\text{d}t=\int_{x_0}^xr‘‘(t)(x-t)\,\text{d}t\tag{28}\]

\[r(x)=\dfrac{1}{n!}\int_{x_0}^xf^{(n+1)}(t)(x-t)^n\,\text{d}t\tag{29}\]

时间: 2024-10-24 11:13:26

【微积分】 04 - 一元积分的相关文章

多变量微积分20——球坐标系

球坐标系是三维坐标系的一种,用以确定三维空间中点.线.面以及体的位置,它以坐标原点为参考点,由方位角.仰角和距离构成.球坐标系在地理学.天文学中都有着广泛应用. 球坐标系 球坐标中是这样表示空间中一点的:用ρ表示点到原点的距离,0 ≤ ρ≤ +∞:在ρz平面上,从z轴正半轴向ρ偏转的角度是φ,0 ≤ φ≤ π:从x轴偏转到平面的角度是θ,0 ≤ θ≤ 2π,如下图所示: 被称作球坐标的原因是,如果固定了ρ=a作为半径,通过移动ρ就可以得到一个球面,φ就是ρ的南北朝向,0°≤ φ < 90°,ρ朝

【微积分】 07 - 微积分的应用

1. 微分的应用 1.1 一元函数的微分 1.1.1 单调性.极值.渐近线 导数给出了函数的走向,它对我们分析函数的图形性质很有作用,这里就用微分学的知识来了解函数的性质.一阶导数对函数的影响是最直接的,这里先看一阶导数.对于区间上的常值函数\(f(x)=C\),它的导数处处为零,反之由中值定理知,导数恒为零的函数为常值,故函数在区间上\(f(x)=0\)的充要条件是\(f'(x)=0\).这个结论还说明了导数相同的函数的差函数为常数,这对在证明函数相等很有用,比如可以证明\(3\arccos{

积分排名

1. 博客园排行榜: http://www.cnblogs.com/AllBloggers.aspx 2. 我的积分和排名: 2015.09.04 : 积分 - 2303 排名 - 37339

MIT挑战(如何在12个月内自学完成MIT计算机科学的33门课程|内附MIT公开课程资源和学习顺序

译者注:本文译自Scott H. Young的博客,Scott拥有超强的学习能力,曾在12个月内自学完成麻省理工学院计算机科学的33门课程.本文就是他个人对于这次MIT挑战的介绍和总结. 版权声明:本次翻译已经得到Scott本人授权,禁止任何形式的转载. --------------------------------------- 在接下来的12个月里,我将在不去上课的情况下,学完整个MIT四年分的计算机课程. 更新:MIT挑战现在已经结束了.我在2012年9月26日完成了挑战,距离开始时间2

第0周 数学基础,什么是电路

前言:老师推荐了好多网上课程,其中最爱电路.回家后,寒假生活在忙碌中稳定下来,开始每天的学习积累. 前不久试看了清华大学的MOOC<电路原理>,大呼过瘾!学习知识未曾有过的条理和简单! 该课程特点总结如下: ·知识高度总结,简练: ·概念解释地简单直白,举例说明: ·课件多用图示,少文字,符合记忆特点: ·充分考虑学生学习过程中的问题. 知识梳理: 第0讲 数学基础知识 ·微积分 积分--累积效应,微分--变化率. ·线性代数: 线性判断依据:齐次性,可加性. 矩阵:对线性代数或微分方程组的规

总目录

下图是我曾经接触到的东西,里面很多东西都被渐渐淡忘,只有那么一丝的概念和模糊的原理盘旋在脑海中.不过我想以后我更新完博客会对下面对所有内容加深印象的.以后每一.两周更新一篇博文.我觉得编程的核心是构建模型,敲代码是码农的事情,所以我的文章以理论为主. Linux内核 系统调用 模块编程 中断系统 时钟模块 RB Tree 进程调度 调度器相关数据结构 进程创建与调度流程 CFS算法 守护进程 从高层看调度器 网络模块 sk_buff数据结构 网络访问层 互联网络层 传输层 应用层 Socket编

北航物理实验

99级物理实验试题 1. 测量电压表内阻的线路如图所示.为电阻箱,为稳压电源,其内阻可忽略不计.实验测得一组不同值时的电压表读数(见下表).试用一元线性归纳法(不要求计算相关系数和不确定度)求出.   20.0 50.0 100.0 200.0 300.0 400.0   2.80 2.72 2.60 2.38 2.20 2.04 (一元线性回归的计算公式为:) 解: 令,则(由于的有效数字多,精度高,故用做) , ,.   1 2 3 4 5 6 平均   2.8 2.72 2.6 2.33

[Python数据挖掘]第2章、Python数据分析简介

1.Python数据结构 2.Numpy数组 import numpy as np #一般以np作为numpy的别名 a = np.array([2, 0, 1, 5]) #创建数组 print(a) #输出数组 print(a[:3]) #引用前三个数字(切片) print(a.min()) #输出a的最小值 a.sort() #将a的元素从小到大排序,此操作直接修改a,因此这时候a为[0, 1, 2, 5] b= np.array([[1, 2, 3], [4, 5, 6]]) #创建二维数

SIGAI机器学习第六集 决策树

讲授决策树的基本概念,分类与回归树的原理,决策树的表示能力,决策树的训练算法,寻找最佳分裂的原理,叶子节点值的标记,属性缺失与替 代分裂,决策树的剪枝算法,决策树应用. 非常直观和易于理解的机器学习算法,最符合人的直观思维,因为生活中很多时候做决策就是用这种树状结构做决定的. 大纲: 基本概念分类与回归树训练算法寻找最佳分裂属性缺失与替代分裂过拟合与剪枝实验环节实际应用 基本概念: ①树是一种分层的数据结构,家谱.书的目录就是一棵树的结构. ②树是一个递归的结构,树的每个子节点,以它为根同样是一