MapReduce实现手机上网流量分析

一、问题背景

  现在的移动刚一通话就可以在网站上看自己的通话记录,以前是本月只能看上一个月。不过流量仍然是只能看上一月的。

  目的就是找到用户在一段时间内的上网流量。

  本文并没有对时间分组。

二、数据集分析

  可以看出实际数据集并不是每个字段都有值,但是还好,完整地以tab隔开了,数据格式还是不错的,我们需要的上行下行数据都有,没有缺失值。其实这个需要在程序中处理,如果不在的话 该怎么办。

1363157985066 	13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157995052 	13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			4	0	264	0	200
1363157991076 	13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			2	4	132	1512	200
1363154400022 	13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			4	0	240	0	200
1363157993044 	18211575961	94-71-AC-CD-E6-18:CMCC-EASY	120.196.100.99	iface.qiyi.com	视频网站	15	12	1527	2106	200
1363157995074 	84138413	5C-0E-8B-8C-E8-20:7DaysInn	120.197.40.4	122.72.52.12		20	16	4116	1432	200
1363157993055 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1363157995033 	15920133257	5C-0E-8B-C7-BA-20:CMCC	120.197.40.4	sug.so.360.cn	信息安全	20	20	3156	2936	200
1363157983019	13719199419	68-A1-B7-03-07-B1:CMCC-EASY	120.196.100.82			4	0	240	0	200
1363157984041 	13660577991	5C-0E-8B-92-5C-20:CMCC-EASY	120.197.40.4	s19.cnzz.com	站点统计	24	9	6960	690	200
1363157973098 	15013685858	5C-0E-8B-C7-F7-90:CMCC	120.197.40.4	rank.ie.sogou.com	搜索引擎	28	27	3659	3538	200
1363157986029 	15989002119	E8-99-C4-4E-93-E0:CMCC-EASY	120.196.100.99	www.umeng.com	站点统计	3	3	1938	180	200
1363157992093 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			15	9	918	4938	200
1363157986041 	13480253104	5C-0E-8B-C7-FC-80:CMCC-EASY	120.197.40.4			3	3	180	180	200
1363157984040 	13602846565	5C-0E-8B-8B-B6-00:CMCC	120.197.40.4	2052.flash2-http.qq.com	综合门户	15	12	1938	2910	200
1363157995093 	13922314466	00-FD-07-A2-EC-BA:CMCC	120.196.100.82	img.qfc.cn		12	12	3008	3720	200
1363157982040 	13502468823	5C-0A-5B-6A-0B-D4:CMCC-EASY	120.196.100.99	y0.ifengimg.com	综合门户	57	102	7335	110349	200
1363157986072 	18320173382	84-25-DB-4F-10-1A:CMCC-EASY	120.196.100.99	input.shouji.sogou.com	搜索引擎	21	18	9531	2412	200
1363157990043 	13925057413	00-1F-64-E1-E6-9A:CMCC	120.196.100.55	t3.baidu.com	搜索引擎	69	63	11058	48243	200
1363157988072 	13760778710	00-FD-07-A4-7B-08:CMCC	120.196.100.82			2	2	120	120	200
1363157985066 	13726238888	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157993055 	13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200

三、实验分析

3.1Mapper

  首先看咱们的目的是统计每个人的上行总流量和下行总流量以及上下行总流,上下行=上行+下行,这个是有意义的,因为我们并不能实时得到自己的上网流量,这个说的有点大了,我们并没有六式计算,或者说是为了实现。

  输入的key是行号,一般是Object和LongWritable,一般输入的key没啥用,数据集市一行一行文本,输入value是text,输入以电话号码为key,那么是text,输出value包含三类信息,上行总、下行总和总,可以封装在数组中,但是这样很不利于修改,比如说项目经历要你增加一些属性要显示,或者减少一些,一般用bean。

package cn.app.hadoop.mr.datacount;

import java.io.IOException;
import java.text.FieldPosition;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

//第一个处理文本的话一般是LongWritable  或者object
//一行一行的文本是text
//输出的key的手机号 定位Text
//结果是DataBean  一定要实现Writable接口
public class DataCountMapper extends Mapper<LongWritable, Text, Text, DataBean> {

	//实际处理中已经进行了数据清洗 在这就不catch
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String[] fields = line.split("\t");
		String telNo = fields[1];
		long upPayLoad = Long.parseLong(fields[8]);
		long downPayLoad = Long.parseLong(fields[9]);

		//封装到bean,如果格式不对那么跳过 这里不考虑,假设已经清洗
		DataBean dataBean = new DataBean(telNo,upPayLoad,downPayLoad);

		//但是这种方式  每行都new了一个databena下次并没有释放 很慢
		//能不能在外边new DataBean,每次修改值,如果按以前的思维是不行的,因为指向了
		//同一块内存,没法相加
		//但是在hadoop里是可以的,因为每次写入以后就已经序列化了,下次不一样了
		context.write(new Text(telNo), dataBean);
	}

}

  

3.2 DataBean

  bean要能在网络间传输,需要实现hadoop的writable接口,那么首先实现接口的方法,

//反序列化 deserializable  从字节流独处 赋值给内存
	public void readFields(DataInput in) throws IOException {
		// TODO Auto-generated method stub

		//注意顺序   类型  里面没参数
		//this.telNo = in.readUTF(telNo);是错的

		this.telNo = in.readUTF();
		this.upPayLoad = in.readLong();
		this.downPayLoad = in.readLong();
		this.totalPayLoad = in.readLong();

	}

	//序列化serializable,从内存写入到字节流 或者通过rmi在网上传输
	public void write(DataOutput out) throws IOException {
		// TODO Auto-generated method stub
		//手机号是String,但是没有writeString,用writeUTF
		out.writeUTF(telNo);
		out.writeLong(upPayLoad);
		out.writeLong(downPayLoad);
		out.writeLong(totalPayLoad);
	}

  write就是序列化,吧对象写入到字节流,注意String类型并没有对性的writeString算法,可以用通用的writeUTF方法,证书类型用long,又对影的writeLong。

  readFile就是反序列化,从硬盘或者网络读出,然后赋值给对象,注意读的时候不需要参数,比如

this.telNo = on.readUTF(telNo);

  这样是错误的,想想看对象都成字节流,怎么能看得出是什么,所以是按顺序来判断对应属性的,但是每个属性攒了多少个字节呢,这就要靠属性的类型来确定了,这就想分配内存一样,以上纯属个人理解。

  那么bean有什么属性呢?需要手机号码,上行、下行,以及赞自己见得总流量,然后产生getter和setter;mapper提交的时候就提交DataBean,这就需要有参数的够着方法,不能每次都setter,另外mapper写入的时候通过反射机制得到实例化的dataBean,那么我们就需要午餐的默认垢找方法。

  另外写入databean的时候默认输出类名+hashcode值,这不是我们需要的,所以重写toString方法,eclipse可以自动生成。

	@Override
	public String toString() {
		//电话号码不要了
		return "DataBean [upPayLoad=" + upPayLoad
				+ ", downPayLoad=" + downPayLoad + ", totalPayLoad="
				+ totalPayLoad + "]";
	}

  

3.3 Reducer

  reducer的输入类型就是mapper的输出类型,分别是text和databean,他的输出类型野是text和databean。

  这其实就是业务逻辑复杂一些的wordcount,mapper提交到reducer的已合并相同key格式是<telNo,{{up1,dw1},{up2,dw2}}>,我们需要便利value结合,廉价上行流量得到上行总流量,廉价下行流量得到下行总刘玲,那么最总得流量是上下行总得和。

3.4 Main

  可以直接在eclipse里,new reducer driver,就是main函数了,为什么main里总是要new conf,这是为了给本job个性化配置,通过conf.set也是kv对,否则就找全聚德conf。

  另外注意写路径的时候加上hdfs://hostname:8020,因为没有上下文的FileSystem,所以必须加,否则认为是本地的file,提示找不到。

四、实验分析

  可以从原始数据找到一个用户的两条或者多交记录,求和,然后对比,看看业务逻辑对不。

时间: 2024-10-05 15:42:28

MapReduce实现手机上网流量分析的相关文章

MapReduce实现手机上网日志分析(分区)

一.问题背景 实际业务的需要,比如以移动为例,河南的用户去了北京上网,那么他的上网信息默认保存在了北京的基站,那么我们想要查询北京地区的上网日志信息默认也包含了其他地区用户的在本区的上网信息,否则只能扫描日志找到北京,很慢,所以分区很需要. 二.数据集分析 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826

MapReduce实现手机上网日志分析(排序)

一.背景 1.1 流程 实现排序,分组拍上一篇通过Partitioner实现了. 实现接口,自动产生接口方法,写属性,产生getter和setter,序列化和反序列化属性,写比较方法,重写toString,为了方便复制写够着方法,不过重写够着方法map里需要不停地new,发现LongWritable有set方法,text也有,可以用,产生默认够着方法. public void set(String account,double income,double expense,double surpl

结合手机上网流量业务来说明Hadoop中的自定义数据类型(序列化、反序列化机制)

大家都知道,Hadoop中为Key的数据类型必须实现WritableComparable接口,而Value的数据类型只需要实现Writable接口即可:能做Key的一定可以做Value,能做Value的未必能做Key.但是具体应该怎么应用呢?--本篇文章将结合手机上网流量业务进行分析. 先介绍一下业务场景:统计每个用户的上行流量和,下行流量和,以及总流量和. 本次描述所用数据: 日志格式描述: 日志flowdata.txt中的具体数据: 接下来贴出详细代码,代码中含有详细注释,从代码中可以看出,

结合手机上网流量业务来说明Hadoop中的二次排序机制,分区机制

本篇博客将结合手机上网流量业务来详细介绍Hadoop的二次排序机制.分区机制,先介绍一下业务场景: 先介绍一下业务场景:统计每个用户的上行流量和,下行流量和,以及总流量和. 本次描述所用数据: 日志格式描述: 日志flowdata.txt中的具体数据: 首先我们先通过mapreduce程序实现上面的业务逻辑: 代码实现: package FlowSum; import java.io.DataInput; import java.io.DataOutput; import java.io.IOE

九(一):手机上网流量汇总求和

对文件中的手机号流量进行汇总: 1363157985066  13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052  13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076  13926435656 20-10-7A-28-CC-0A:CMCC 120.

九(三):手机上网流量汇总求和(排序方式二)

import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean implements WritableComparable<FlowBean>{ //电话号码 private String phoneNb; //上传流量 private long flow_u

使用Pig对手机上网日志进行分析

在安装成功Pig的基础上.本文将使用Pig对手机上网日志进行分析,详细过程例如以下: 写在前面: 手机上网日志文件phone_log.txt.文件内容 及 字段说明部分截图例如以下 需求分析 显示每一个手机号的上网流量情况. 依次完毕下面步骤: 1.将Linux本地文件phone_log.txt上传到HDFS 运行命令dump C; 查看经过以上步骤处理后的结果 查看经过以上步骤处理后的结果 OK.齐活!

求相同号码一天内的上网流量——mapreduce

上网数据 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 2001363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 1

大数据实战:用户流量分析系统

本文是结合hadoop中的mapreduce来对用户数据进行分析,统计用户的手机号码.上行流量.下行流量.总流量的信息,同时可以按照总流量大小对用户进行分组排序等.是一个非常简洁易用的hadoop项目,主要用户进一步加强对MapReduce的理解及实际应用.文末提供源数据采集文件和系统源码. 本案例非常适合hadoop初级人员学习以及想入门大数据.云计算.数据分析等领域的朋友进行学习. 一.待分析的数据源 以下是一个待分析的文本文件,里面有非常多的用户浏览信息,保扩用户手机号码,上网时间,机器序