Prim算法和Kruskal算法求最小生成树

Prim算法

连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的。最小生成树是连通图的一个连通分量,且所有边的权值和最小。

最小生成树中,一个顶点最多与两个顶点邻接;若连通图有n个顶点,则最小生成树中一定有n-1条边。

Prim算法需要两个线性表来进行辅助:

  • visited:

标记已经加入生成树的顶点;(它的功能可以由tree取代)

初始状态:生成树根节点为真,其它为0。

  • tree:

记录生成树,tree[x]保存顶点x的直接根节点下标,若x为树的根节点则tree[x]为其自身。

初始状态:根节点为其自身,其它顶点为NULL。

  • low:

low[i]记录生成树中顶点与生成树外顶点i所有边中的最小值。

初始状态:生成树根节点与其它边之间的权值。

Prim算法采用贪心的思想进行设计:

(1) 初始化:将起始点加入生成树中

(2) 在生成树中的顶点与其它顶点之间的边中寻找最小的边加入生成树中(更新visited,tree);

(3) 搜索新加入顶点与所有生成树外顶点i之间边,若小于原有low[i]则更新low[i];

(4) 重复执行,直至生成树中包含了所有顶点。

Prim算法与Dijsktra算法非常类似,两者在执行过程上的显著区别在于:Prim算法按边进行搜索,将最小边加入生成树中;

Dijsktra算法按顶点进行搜索,选择树外顶点与源点之间最短的边(路径)加入生成树中。

【你如果非手算不可的话】记得在加入新顶点时,标记已加入到生成树中的边以及生成树顶点之间的边。

#define N 10000
int map[N][N],low[N],visited[N],tree[N];
int m, n;

int prim()//以0作为起点(生成树的根)
{
    int i, j, pos, min, result=0;
    memset(visited,0,sizeof(visited));
    visited[0] = 1;
    pos = 0;
    //init low
    for(i = 0; i < n; i++) {
       tree[i] = -1;//
       if(i != pos) {
          low[i] = map[pos][i];
       }
    }
    tree[0] = 0;//

    //get mini
    for(i = 0; i < n - 1; i++) {
        min = INT_MAX;
        //找到与i之间代价最小的节点pos
        for(j = 0; j < n; j++) {
            if(visited[j] == 0 && min > low[j] ) {
                min = low[j];
                pos = j;
             }
        }
        tree[pos] = i;
        result += min;
        visited[pos] = 1;
        //update low
        for(j = 0; j < n; j++) {
            if(visited[j] == 0 && low[j] > map[pos][j]) {
                low[j] = map[pos][j];
            }
        }
    }
    return result;  //返回总代价
}

Kruskal算法

Kruskal算法的步骤:

1.对所有边进行从小到大的排序。

2.每次选一条边(最小的边),如果如果形成环,就不加入(u,v)中,否则加入。那么加入的(u,v)一定是最佳的。

【如果你非手算不可的话】从小到大地搜索所有边,若不产生环则加入生成树中。Kruskal算法是手动求最小生成树的不错选择。

采用递归的方式判断环的存在:

int find(int x) //find the root
{
    if (parent[x] == x) {
        return x;
    }
    else {
        parent[x] = find(parent[x]);
        return parent[x];
    }
}

parent[x]保存顶点x的直接根节点下标,若x为树的根节点则parent[x]为其自身。find函数可以求出节点x的根节点,从而判断是否有环形成。

int head[N],tail[N],weight[N];
int parent[N],sorted[N];

int cmp(const void *ip, const void *jp)
{
    int i = *(int *)ip, j = *(int *)jp;
    return weight[i] - weight[j];
}

int find(int x) //find the root
{
    if (parent[x] == x) {
        return x;
    }
    else {
        parent[x] = find(parent[x]);
        return parent[x];
    }
}

//m vertex, n edge
int kruskal()
{
    int count = 0, x, y, i, e, ans = 0;
    //init
    for(i = 0; i < n; i++) {
        parent[i] = i;
    }
    for(i=0; i < n; i++) {
        sorted[i] = i;
    }
    //sort(r,r+m,cmp);
    qsort(sorted, m, sizeof(int), cmp);
    for(i = 0; i < m; i++)
    {
        e = sorted[i];
        x = find( head[e] );
        y = find( tail[e] );
        if(x != y) {
            ans += weight[e];
            parent[x] = y;
            count++;
        }
    }
    if (count < n - 1) { //无法连通
        return -1;
    }
    return ans;
}
时间: 2024-12-21 04:49:14

Prim算法和Kruskal算法求最小生成树的相关文章

最小生成树之 prim算法和kruskal算法(以 hdu 1863为例)

最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,(u,v)为其中一条边. 构造最小生成树,要解决以下两个问题: (1).尽可能选取权值小的边,但不能构成回路(也就是环). (2).选取n-1条恰当的边以连接网的n个顶点. Prim算法的思想: 设G = (V,E)是连通带权图,V = {1,2,-,n}.先任选一点(一般选第一个点),首

最小生成树Prim算法和Kruskal算法

Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集U,一部分归为点集V,U的初始集合为{V1},V的初始集合为{ALL-V1}. 2. 针对U开始找U中各节点的所有关联的边的权值最小的那个,然后将关联的节点Vi加入到U中,并且从V中删除(注意不能形成环). 3. 递归执行步骤2,直到V中的集合为空. 4. U中所有节点构成的树就是最小生成树. 方法

最小生成树:prim算法和kruskal算法

一个连通图的生成树是图的极小连通子图.它包含图中的所有顶点,并且只含尽可能少的边.若砍去它的一条边,就会使生成树变成非连通图:若给它增加一条边,则会形成一条回路. 最小生成树有如下性质: 1.最小生成树非唯一,可能有多个最小生成树: 2.最小生成树的边的权值之和总唯一,而且是最小的: 3.最小生成树的边数为顶点数减1. 构造最小生成树可以有多种算法.其中多数算法利用了最小生成树的下列一种简称为MST的性质: 假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集.若(u, v)是一条具有

java实现最小生成树的prim算法和kruskal算法

在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点

转载:最小生成树-Prim算法和Kruskal算法

本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:

Prim算法和Kruskal算法的正确性证明

今天学习了Prim算法和Kruskal算法,因为书中只给出了算法的实现,而没有给出关于算法正确性的证明,所以尝试着给出了自己的证明.刚才看了一下<算法>一书中的相关章节,使用了切分定理来证明这两个算法的正确性,更加简洁.优雅并且根本.相比之下,我的证明带着许多草莽气息,于此写成博客,只当是记录自己的思考 ------------------------------------------- 说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的

最小生成树-Prim算法和Kruskal算法

原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在195

[转载]最小生成树-Prim算法和Kruskal算法

转载地址:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 自己在学,感觉这个讲的很不错,就转载了. Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vo

最小生成树(Prim算法和Kruskal算法)

1)最小生成树 给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫生成树.如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Minimum Spanning Tree) 2)应用 比如让你为一个镇的九个村庄架设通信网络,每个村庄相当于一个顶点,权值是村与村之间可通达的直线距离,要求你必须用最小的成本完成这次任务:或者村庄之间建公路,连通N个村庄要N-1条路,如何让建路成本最低之类的问题. 1.Prim算法 ①该算法是构建最小生成树的算法之一.它是