二叉树的非递归遍历--京东2015笔试回忆

题目回忆:

C/C++研发试卷:偏重于数据结构的考察,编程题有2题+1题附加题:

1.输入整数n,求m,m>9,m中各个数位的乘积=n的最小整数;如n=36,m=49;

2.二叉树前序遍历的非递归实现(本文的总结)

3.求第n个数,这个序列满足(2^i)*(3^j)*(5^k),前7个为:2,3,4,5,6,8,10 。。。。

小题有基本的数据结构、程序运行结果、SQL题目。

4.删除表格用DROP命令,死锁产生的条件:

4.1互斥使用(资源独占)
 一个资源每次只能给一个进程使用
4.2、不可强占(不可剥夺)
    资源申请者不能强行的从资源占有者手中夺取资源,资源只能由占有者自愿释放
4.3、请求和保持(部分分配,占有申请)
一个进程在申请新的资源的同时保持对原有资源的占有(只有这样才是动态申请,动态分配)
4.4、循环等待
存在一个进程等待队列
    {P1 , P2 , … , Pn},
    其中P1等待P2占有的资源,P2等待P3占有的资源,…,Pn等待P1占有的资源,形成一个进程等待环路
5.用7 7 7 1四个数和加减乘除计算出48(每个数字用一次)
(7+1/7)*7=50

7*(7-1/7)=48

二叉树的非递归遍历

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁。而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现。在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。

一.前序遍历

前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。

1.递归实现

void preOrder1(BinTree *root)     //递归前序遍历 {    if(root!=NULL)    {        cout<<root->data<<" ";        preOrder1(root->lchild);        preOrder1(root->rchild);    }}

2.非递归实现

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P:

1)访问结点P,并将结点P入栈;

2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

void preOrder2(BinTree *root)     //非递归前序遍历 {    stack<BinTree*> s;    BinTree *p=root;    while(p!=NULL||!s.empty())    {        while(p!=NULL)        {            cout<<p->data<<" ";            s.push(p);            p=p->lchild;        }        if(!s.empty())        {            p=s.top();            s.pop();            p=p->rchild;        }    }}

二.中序遍历

中序遍历按照“左孩子-根结点-右孩子”的顺序进行访问。

1.递归实现

void inOrder1(BinTree *root)      //递归中序遍历{    if(root!=NULL)    {        inOrder1(root->lchild);        cout<<root->data<<" ";        inOrder1(root->rchild);    }} 

2.非递归实现

根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

对于任一结点P,

1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

3)直到P为NULL并且栈为空则遍历结束

void inOrder2(BinTree *root)      //非递归中序遍历{    stack<BinTree*> s;    BinTree *p=root;    while(p!=NULL||!s.empty())    {        while(p!=NULL)        {            s.push(p);            p=p->lchild;        }        if(!s.empty())        {            p=s.top();            cout<<p->data<<" ";            s.pop();            p=p->rchild;        }    }    } 

三.后序遍历

后序遍历按照“左孩子-右孩子-根结点”的顺序进行访问。

1.递归实现

void postOrder1(BinTree *root)    //递归后序遍历{    if(root!=NULL)    {        postOrder1(root->lchild);        postOrder1(root->rchild);        cout<<root->data<<" ";    }    } 

2.非递归实现

后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还未被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

void postOrder2(BinTree *root)    //非递归后序遍历{    stack<BTNode*> s;    BinTree *p=root;    BTNode *temp;    while(p!=NULL||!s.empty())    {        while(p!=NULL)              //沿左子树一直往下搜索,直至出现没有左子树的结点         {            BTNode *btn=(BTNode *)malloc(sizeof(BTNode));            btn->btnode=p;            btn->isFirst=true;            s.push(btn);            p=p->lchild;        }        if(!s.empty())        {            temp=s.top();            s.pop();            if(temp->isFirst==true)     //表示是第一次出现在栈顶              {                temp->isFirst=false;                s.push(temp);                p=temp->btnode->rchild;                }            else                        //第二次出现在栈顶              {                cout<<temp->btnode->data<<" ";                p=NULL;            }        }    }    } 

第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

void postOrder3(BinTree *root)     //非递归后序遍历{    stack<BinTree*> s;    BinTree *cur;                      //当前结点     BinTree *pre=NULL;                 //前一次访问的结点     s.push(root);    while(!s.empty())    {        cur=s.top();        if((cur->lchild==NULL&&cur->rchild==NULL)||           (pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))        {            cout<<cur->data<<" ";  //如果当前结点没有孩子结点或者孩子节点都已被访问过               s.pop();            pre=cur;         }        else        {            if(cur->rchild!=NULL)                s.push(cur->rchild);            if(cur->lchild!=NULL)                    s.push(cur->lchild);        }    }    }

四.整个程序完整的代码

/*二叉树的遍历* 2011.8.25*/ 

#include <iostream>#include<string.h>#include<stack> using namespace std;

typedef struct node{    char data;    struct node *lchild,*rchild;}BinTree;

typedef struct node1{    BinTree *btnode;    bool isFirst;}BTNode;

void creatBinTree(char *s,BinTree *&root)  //创建二叉树,s为形如A(B,C(D,E))形式的字符串 {    int i;    bool isRight=false;    stack<BinTree*> s1;          //存放结点     stack<char> s2;              //存放分隔符    BinTree *p,*temp;    root->data=s[0];    root->lchild=NULL;    root->rchild=NULL;    s1.push(root);    i=1;    while(i<strlen(s))    {        if(s[i]==‘(‘)        {            s2.push(s[i]);            isRight=false;        }            else if(s[i]==‘,‘)            {            isRight=true;        }        else if(s[i]==‘)‘)        {            s1.pop();            s2.pop();        }        else if(isalpha(s[i]))        {            p=(BinTree *)malloc(sizeof(BinTree));            p->data=s[i];            p->lchild=NULL;            p->rchild=NULL;            temp=s1.top();            if(isRight==true)                {                temp->rchild=p;                cout<<temp->data<<"的右孩子是"<<s[i]<<endl;            }            else            {                temp->lchild=p;                cout<<temp->data<<"的左孩子是"<<s[i]<<endl;            }            if(s[i+1]==‘(‘)                s1.push(p);        }        i++;    }    }

void display(BinTree *root)        //显示树形结构 {    if(root!=NULL)    {        cout<<root->data;        if(root->lchild!=NULL)        {            cout<<‘(‘;            display(root->lchild);        }        if(root->rchild!=NULL)        {            cout<<‘,‘;            display(root->rchild);            cout<<‘)‘;        }    }}

void preOrder1(BinTree *root)     //递归前序遍历 {    if(root!=NULL)    {        cout<<root->data<<" ";        preOrder1(root->lchild);        preOrder1(root->rchild);    }}

void inOrder1(BinTree *root)      //递归中序遍历{    if(root!=NULL)    {        inOrder1(root->lchild);        cout<<root->data<<" ";        inOrder1(root->rchild);    }} 

void postOrder1(BinTree *root)    //递归后序遍历{    if(root!=NULL)    {        postOrder1(root->lchild);        postOrder1(root->rchild);        cout<<root->data<<" ";    }    } 

void preOrder2(BinTree *root)     //非递归前序遍历 {    stack<BinTree*> s;    BinTree *p=root;    while(p!=NULL||!s.empty())    {        while(p!=NULL)        {            cout<<p->data<<" ";            s.push(p);            p=p->lchild;        }        if(!s.empty())        {            p=s.top();            s.pop();            p=p->rchild;        }    }}

void inOrder2(BinTree *root)      //非递归中序遍历{    stack<BinTree*> s;    BinTree *p=root;    while(p!=NULL||!s.empty())    {        while(p!=NULL)        {            s.push(p);            p=p->lchild;        }        if(!s.empty())        {            p=s.top();            cout<<p->data<<" ";            s.pop();            p=p->rchild;        }    }    } 

void postOrder2(BinTree *root)    //非递归后序遍历{    stack<BTNode*> s;    BinTree *p=root;    BTNode *temp;    while(p!=NULL||!s.empty())    {        while(p!=NULL)              //沿左子树一直往下搜索,直至出现没有左子树的结点          {            BTNode *btn=(BTNode *)malloc(sizeof(BTNode));            btn->btnode=p;            btn->isFirst=true;            s.push(btn);            p=p->lchild;        }        if(!s.empty())        {            temp=s.top();            s.pop();            if(temp->isFirst==true)     //表示是第一次出现在栈顶              {                temp->isFirst=false;                s.push(temp);                p=temp->btnode->rchild;                }            else                        //第二次出现在栈顶              {                cout<<temp->btnode->data<<" ";                p=NULL;            }        }    }    } 

void postOrder3(BinTree *root)     //非递归后序遍历{    stack<BinTree*> s;    BinTree *cur;                      //当前结点     BinTree *pre=NULL;                 //前一次访问的结点     s.push(root);    while(!s.empty())    {        cur=s.top();        if((cur->lchild==NULL&&cur->rchild==NULL)||           (pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))        {            cout<<cur->data<<" ";  //如果当前结点没有孩子结点或者孩子节点都已被访问过               s.pop();            pre=cur;         }        else        {            if(cur->rchild!=NULL)                s.push(cur->rchild);            if(cur->lchild!=NULL)                    s.push(cur->lchild);        }    }    }

int main(int argc, char *argv[]){    char s[100];    while(scanf("%s",s)==1)    {        BinTree *root=(BinTree *)malloc(sizeof(BinTree));        creatBinTree(s,root);        display(root);        cout<<endl;        preOrder2(root);        cout<<endl;         inOrder2(root);        cout<<endl;        postOrder2(root);        cout<<endl;        postOrder3(root);        cout<<endl;    }    return 0;}
时间: 2024-12-13 16:01:39

二叉树的非递归遍历--京东2015笔试回忆的相关文章

二叉树的非递归遍历及算法分析

二叉树介绍 二叉树是一类重要的数据结构.二叉树常被用于实现二叉查找树和二叉堆.通常子树被称作"左子树"(left subtree)和"右子树"(right subtree). 一种二叉树结点定义: struct bit_node { chardata; structbit_node *lchild,*rchild; }; 遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次.由于二叉树是

好久没更新了,哪里不对!更新二叉树的非递归遍历

#include <iostream> #include <stack> using namespace std; typedef struct Node { Node* lchild; Node* rchild; int data; }BNode,BTree; void visit(Node*); void inorder(BTree *root) { BNode * p = root; stack<Node*> s; if(p||!s.empty()) { s.pu

二叉树的非递归遍历(转)

原文地址 二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁.而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现.在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点. 一.前序遍历 前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问. 1.递归实现 void pr

二叉树的非递归遍历C语言实现

腾讯面试中被问到二叉树的非递归遍历实现,当时记得不太清楚,回来专门复习了非递归的实现,整理代码如下: //采用二叉链表存储方式的二叉树,非递归中序遍历C语言实现代码 #include<stdio.h> #include <malloc.h> //函数结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 //Status是

(转)二叉树的非递归遍历

转自: 二叉树的非递归遍历 http://www.cnblogs.com/dolphin0520/archive/2011/08/25/2153720.html 二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁.而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现.在三种遍历中,前序和中序遍历的非递归算法都

二叉树的非递归遍历(转载)

二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁.而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现.在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点. 一.前序遍历 前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问. 1.递归实现 void preOrde

二叉树的非递归遍历(先序、中序、后序和层序遍历)

[前文] 二叉树的非递归遍历有 先序遍历.中序遍历 .后续遍历 和 层序遍历. 非递归算法实现的基本思路:使用堆栈.而层序遍历的实现:使用队列. 如下图所示的二叉树: 前序遍历顺序为:ABCDE (先访问根节点,然后先序遍历其左子树,最后先序遍历其右子树) 中序遍历顺序为:CBDAE (先中序遍历其左子树,然后访问很节点,最后中序遍历其右子树) 后续遍历顺序为:CDBEA (先后序遍历其左子树,然后后续其右子树,最后访问根节点) 层序遍历顺序为:ABECD (由上至下.从左到右遍历二叉树) [准

二叉树之非递归遍历

1.二叉树的遍历 为什么要有遍历操作:将线性结构-------->非线性结构: 将递归程序-------->非递归程序: 2.二叉树的三种递归遍历: 先序遍历:先访问根(父)结点,在访问左分支,最后访问右分支: 中序遍历:先访问左分支,在根结点,最后右分支: 后序遍历:先访问左分支,在访问右分支,最后访问根节点: 所有程序皆正确测试过,后面将给完整程序和测试程序,测试结果. 以下就是递归遍历,先序,中序,后序: 下面的都是在类外定义的函数,所以为模板函数: //先序遍历 template<

[算法]二叉树的非递归遍历算法

1.二叉树的非递归中序遍历算法 二叉树的中序遍历方法是:左中右,因此一开始会顺着根节点的左孩子一直往下(这点和先序遍历一样,这也是二者前面部分代码很相似的原因),到最后一个左孩子时尝试把它的右孩子塞进栈内,然后顺着它的的左孩子而下,直到不能访问为止.利用的栈FILO的特性,对每个节点都进行顺左孩子而下即可. 上代码: 1 void inOrder(TreeNode* root,vector<int>& inOrder) 2 { 3 stack<TreeNode*>st; 4