排列组合

(常考)错位排列 有N封信和N个信封,每封信都不装在自己信封里的排列种数记作Dn,则 D1=0,D2=1,D3=2,D4=9,D5=44,D6=265

 一、相邻问题---捆绑法 不邻问题---插空法
  对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

  【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?

  A.20 B.12 C.6 D.4

  【答案】A。

  【解析】

以下内容需要回复才能看到

首先,从题中之3个节目固定,固有四个空。所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。综上所述,共有12+8=20种。

  二、插板法
  一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。

  【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?

  A.190 B.171 C.153 D.19

  【答案】B。

  【解析】

以下内容需要回复才能看到

此题的想法即是插板思想:在20电脑内部所形成的19个空中任意插入17个板,这样即把其分成18份,那么共有: C(19,17)=C(19,2)=171种。

  三、特殊位置和特殊元素优先法
  对有限制的排列组合问题中的特殊元素或特殊位置优先考虑。

  【例题2】从6名运动员中选4人参加4×100米接力,甲不跑第一棒和第四棒的参赛方案各有多少种?

  A.120 B.240 C.180 D.60

  【答案】B。

  【解析】

以下内容需要回复才能看到

方法一:特殊位置优先法:首先填充第一棒,第一棒共有5个元素可供选择,其次第4棒则有4个元素可以选择;然后第2棒则有4个元素可以选择,第3棒则有3个元素可以选择。则共有5×4×4×3=240种。

  方法二:特殊元素优先法:首先考虑甲元素的位置

  第一类,甲不参赛有A(5,4)=120种排法;

  第二类,甲参赛,因只有两个位置可供选择,故有2种排法;其余5人占3个位置有A(5,3)=60种占法,故有2×60=120种方案。

  所以有120+120=240种参赛方案。

  四、逆向考虑法
  对于直接从正面算比较复杂的排列、组合题,我们就要学会间接的方法。

  正方体8个顶点中取出4个,可组成多少个四面体?

  A.70 B.64 C.61 D.58

  【答案】D。

  【解析】

以下内容需要回复才能看到

所求问题的方法数=任意选四点的组合数-共面四点的方法数,共C(8,4)-12=70-12=58个。

  五、分类法
  解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

  【例题3】五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有

  A.120种 B.96种 C.78种 D.72种

  【答案】C。

  【解析】

以下内容需要回复才能看到

由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A (4,4)=24种排法;2)若甲在第二,三,四位上,则有3×3×3×2×1=54种排法,由分类计数原理,排法共有24+54=78种,选C。

练习题:

1、丙丁四个人站成一排,已知:甲不站在第一位,乙不站在第二位,丙不站在第三位,丁不站在第四位,则所有可能的站法数为多少种?

  A.6 B.12 C.9 D.24

  2、马路上有编号为l,2,3,……,10十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?

  A.60 B.20 C.36 D.45

  3、用数字0,1,2,3,4,5组成没有重复数字的四位数,可组成多少个不同的四位数?

  A .300 B.360 C.120 D.240

  4、10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?

  A.45 B.36 C.9 D.30

  5、六人站成一排,求甲不在排头,乙不在排尾的排列数?

  A.120 B.64 C.124 D.136
【参考答案及解析】:

以下内容需要回复才能看到

  1、【解答】C。能站在第一位,因此甲必然站在后三个位置中的某一个位置。

  如果甲站在第二位,则共有三种可能:乙甲丁丙,丙甲丁乙,丁甲丙乙

  如果甲站在第三位,则共有三种可能,乙丁甲丙,丙丁甲乙,丁丙甲乙

  如果甲站在第四位,则共有三种可能,乙丙丁甲,丙丁乙甲,丁丙乙甲

  因此一共有9种可能

  2、【解答】B。关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。所以共C(6,3)=20种方法。

  3、【解答】A。排除法解P(6,4)-P(5,3)个=300个

  4、【解答】B。把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共C(9,7)=36种。

  5、【解答】D。先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

  第一类:乙在排头,有A(5,5)种站法。

  第二类:乙不在排头,当然他也不能在排尾,有C(4,1)×(4,1)×(4,4)种站法,故共有136种站法。

时间: 2024-12-20 13:02:50

排列组合的相关文章

HDU--5396(区间dp+排列组合)

做这道题的时候,想到会不会是dp,然后发现dp可做,但是一直被自己坑到死. 枚举最后合并的那个位置,然后对于加减号的,分成的前后两个部分都有不同的组合方法, (a1+a2........) +  (b1,b2.............)         对于每个a,被加b的个数的阶乘次 ,对于每个b,被加a的个数的阶乘次 减法同理 乘法特殊一点 (a1+a2........) *  (b1,b2.............)  乘法分配率,直接将两部分的总和相乘即可 想到这些还远远没有结束,因为最

hdu 1799 (循环多少次?)(排列组合公式)

循环多少次? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3051    Accepted Submission(s): 1117 Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次OP运算

排列组合问题

一.不同元素子集问题 78. Subsets Given a set of distinct integers, nums, return all possible subsets. 给定一组非重复数字,求出所有可能的子集 解析: 例如 [1,2,3],解法: 首先放[],然后往已有的[]中放1 1. 首先放1 此时已有[ [], 1 ] 2. 然后对[ [], 1 ] 放2 于是此时有 [ [], [1], [2], [1,2] ] 3. 然后对[ [], [1], [2], [1,2] ]

排列组合问题之圆形分布

1.问题1.1 团团坐有一张圆桌,坐了A,B,C,D四个人,已知,D在A的右边,C在D的对面,请问A,B,C,D,的坐次? 解答:这个问题相对简单,我们纸上画一画,就能画出他们的可能的位置了 但是,可能还有一种解,比如我们把A,B,C,D依次右转一个位,也是满足条件的,而且只要保持他们的相对位置不变,依次右转n个位都是问题的解,而且还有个有趣的事情,当他们转了一圈(即右转4个位)后,他们右回到原位了 2.圆形分布上面这个问题就是一种圆形分布,那么他和直线分布的区别在哪里呢?又有什么联系呢?上面文

【noi 2.6_9288】&amp;【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度)

题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变形.(推荐阅读:http://www.cnblogs.com/chenhuan001/p/5157133.html).P.S.不知我之前自己推出的公式“C(n,m)*C(2*m,m)/(m+1)*P(n,n)*P(m,m)”是否是正确的. (1)在不考虑m人和n人本身组内的排列时,总方案数为C(m+

用递归写排列组合问题

最近递归弄的人头疼,但是这两天看过来也稍微总结了一些不能称得上是技巧的技巧吧 问题如下,将1,2,3,4这四个数字排列组合的输出来,看网上有个很二的方法吧,就是将10000以内的数全部输出再筛选,对此有点无语,但是程序倒是挺好编的,嘿嘿 回归到正题中,用递归的思想解决 (1)采用旋转数字的方法,当步长为1时,1234还是1234,步长为2的时候,1234可以变为1243.1324...,步长为3 的时候,1234可以变为1423,诸如此类,最重要的能体现递归的就是将每次递归一次的数字还可以接着旋

LightOJ1005 Rooks(DP/排列组合)

题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0]=1 转移就是从第i-1行转移到第i行,对于第i行要嘛放上一个车要嘛不放,放的话有n-j-1种方法.即dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(n-j-1). 1 #include<cstdio> 2 #include<cstring> 3 using na

Codeforces Gym 100187D D. Holidays 排列组合

D. Holidays Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/problem/D Description Everyone knows that the battle of Endor is just a myth fabled by George Lucas for promotion of his movie. Actually, no battle of Endor has

hdu 4465 Candy (快速排列组合 )

Candy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2115    Accepted Submission(s): 910 Special Judge Problem Description LazyChild is a lazy child who likes candy very much. Despite being ve