多元统计分析课程

                                                                                                           前言

掌握一门核心课程,一定要从其定义,应用环境,和其他知识点之间的联系入手,纵向对比,横向对比,比较相同点,比较不同点。这样才能加深对知识的掌握,做到灵活应用。从思想方法与具体实践来讲,一旦理解和知识点,思想方法容易记忆,很容易想到,但是具体的算法可能容易忘记,到使用的时候有点无能为力的感觉,不过掌握了思想方法,才知道什么场景可以使用,什么场景不可以使用。思想方法是基础,算法是关键,解决问题是目的。以多元统计分析为例,本节主要讲述多元统计分析的知识点。

第一章  多元统计基础

多元,即多个变量。可以为一个向量,也可以为一个矩阵。向量的话为单一的截面数据或者时间序列数据,矩阵的话可以为面板数据,或者是多个变量构成的截面数据或者时间序列数据。那么在此和Python中的列表和字典有什么区别呢?sql server 与 R 以及 SPSS表达变量的方式,都是一致的,同一列表示一个变量,同一行表示一个样本。不同环境,可以对行列进行转置,以便实现自己的目的。

第二章  聚类分析

聚类分析方法:对样本聚类,对变量聚类。主要方法有模糊聚类法,K-mean 聚类法,系统聚类法等等

掌握欧氏距离,马氏距离,明考斯基距离。距离与中心点的远近,半径之间的关系。

第三章  方差分析

单样本的方差分析,两独立样本的方差分析,两配对样本的方差分析。

第三章  主成分分析

采用降纬的方式,将多个存在相关关系的变量整合为几个互相独立的变量,用较少的变量来解释,根据各个新变量对解释结果方差的大小,保留几个主要成分即可。在此可不可以和回归分析的多重共线性关联,当构建回归分析的时候,一旦存在多重共线性,可以使用主成分分析,得到新变量,消除共线性?

第四章  因子分析

因子分析,也是采用降纬的方式,

第五章  典型相关分析

在此联想到pearson相关性,Kendall相关性以及。。。?共三种相关性

第六章  联合分析

比较经典的案例就是购房者对买房地点的选择,考虑交通,房价,安全,距离上班地点的远近等等。

时间: 2024-12-16 16:40:32

多元统计分析课程的相关文章

R语言多元统计分析初探

# 读取多元统计分析数据到R wine<-read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", sep=",") # 绘制多元统计数据 # 矩阵散点图 # 一种常见的方法是使用散点图画出多元统计数据,展现出所有变量两两之间的散点图. # 我们可以使用R中的"car"包里的"scatterplotMatrix()&q

ML—R常用多元统计分析包(持续更新中……)

基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面要综述的包主要分为以下几个部分: 1) 多元数据可视化(Visualising multivariate data): 绘图方法: 基本画图函数(如:pairs().coplot())和lattice包里的画图函数(xyplot().splom())可以画成对列表的二维散点图,3维密度图.car包里的scatterplot.matrix()函数提供更强大的二维散点图的画法.cwhmisc包集合里的

多元统计分析-主成分分析

目的: 使用主成分分析,将数据降维,并尽量减少各个数据之间的相关性 主成分分析主要就是把有相关性的特征合并到一起 做法: 求出数据的协方差矩阵Σ 求出Σ的特征向量(λ1,λ2,,,,,,λn) 求出λi对应的特征向量Ui Ui就是第i个主成分的系数了,,,,第i个主成分就是Ui * X 第i个主成分的贡献率是λi / Σλk 对数据进行标准化之后,求出的协方差矩阵R可替换Σ作为求主成分的矩阵 原文地址:https://www.cnblogs.com/shensobaolibin/p/101653

R语言与概率统计(三) 多元统计分析

> #############6.2一元线性回归分析 > x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23) > y<-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0) > plot(x~y) > lm.sol<-lm(y ~ x) > summary(lm.sol) Call: lm(formul

R语言与概率统计(三) 多元统计分析(下)广义线性回归

广义线性回归 > life<-data.frame( + X1=c(2.5, 173, 119, 10, 502, 4, 14.4, 2, 40, 6.6, + 21.4, 2.8, 2.5, 6, 3.5, 62.2, 10.8, 21.6, 2, 3.4, + 5.1, 2.4, 1.7, 1.1, 12.8, 1.2, 3.5, 39.7, 62.4, 2.4, + 34.7, 28.4, 0.9, 30.6, 5.8, 6.1, 2.7, 4.7, 128, 35, + 2, 8.5,

sas教程

http://web5.pku.edu.cn/pucssr/SASbiancheng.pdf 本教程中的主题将向您介绍 SAS Enterprise Guide.您最好依次浏览这些主题. 概述 启动项目并浏览主要窗口 向项目添加 SAS 数据 从文本文件导入数据 关于 SAS 任务 创建和修改列表报表 创建条形图 关于"查询生成器" 使用查询连接表 将计算列添加至查询 从查询生成"汇总表" 创建饼图 执行线性模型分析 将多个报表组合成单个文档 使用过程流 更多内容

南开大学数学院本科生课程信息汇总表(2013.11.19)

      数学院本科生课程信息汇总表         课程代码 课程名称 英文课程名称 课程组成员 学分 先导课程 参考教材 作者 出版社 1010011090 概率论 江一鸣 4 数学分析 概率论基础 李贤平 高等教育出版社 1010011690 金融信用风险 江一鸣 3 概率论 金融衍生品定价模型---数理金融引论 孙健 中国经济出版社 1010010120 抽象函数与Banach代数 Abstract Functions and Banach Algebras 刘锐 3 实变函数(实分析

Hotelling T2检验和多元方差分析

1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态分布N(μ1,∑),N(μ2,∑),欲检验 H0:μ1=μ2 H1:μ1≠μ2 分别计算出两样本每个变量的均值构成的均向量X.Y及合并的组内协方差阵S,则统计量T2为 其中,S=(Lx+Ly)/(n+m-2),为合并协方差矩阵,分别为两样本的离差阵,即: 求得T2后,可查相应界值表得到P值,从而作出

一文读懂多元回归分析

一.多元回归分析简介 用回归方程定量地刻画一个应变量与多个自变量间的线性依存关系,称为多元回归分析(multiple linear regression),简称多元回归(multiple regression). 多元回归分析是多变量分析的基础,也是理解监督类分析方法的入口!实际上大部分学习统计分析和市场研究的人的都会用回归分析,操作也是比较简单的,但能够知道多元回归分析的适用条件或是如何将回归应用于实践,可能还要真正领会回归分析的基本思想和一些实际应用手法! 回归分析的基本思想是:虽然自变量和