Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1666 Accepted Submission(s): 614
Problem Description
There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequence of X
as x[i1], x[i2],...,x[ik], which satisfies follow conditions:
1) x[i1] < x[i2],...,<x[ik];
2) 1<=i1 < i2,...,<ik<=n
As an excellent program designer, you must know how to find the maximum length of the
increasing sequense, which is defined as s. Now, the next question is how many increasing
subsequence with s-length can you find out from the sequence X.
For example, in one case, if s = 3, and you can find out 2 such subsequence A and B from X.
1) A = a1, a2, a3. B = b1, b2, b3.
2) Each ai or bj(i,j = 1,2,3) can only be chose once at most.
Now, the question is:
1) Find the maximum length of increasing subsequence of X(i.e. s).
2) Find the number of increasing subsequence with s-length under conditions described (i.e. num).
Input
The input file have many cases. Each case will give a integer number n.The next line will
have n numbers.
Output
The output have two line. The first line is s and second line is num.
Sample Input
4 3 6 2 5
Sample Output
2 2
Source
2011 Multi-University Training Contest 16 - Host by TJU
此题有二解:
方一:dp+最大流 (我所用的方法)
方二:思路:可以用n*log(n)的做法求出最长上升子序列,然后删除原数组中的这些数,再求最长上升子序列(如果长度减小,则直接退出)。
题意:给一个序列X(x[1] , x[2] , ....x[n]) , 个数为n 。求最长递增子序列长度,及 最长递增子序列的个数。要求:1): x[i1] < x[i2],...,<x[ik];( 1<=i1 < i2,...,<ik<=n ) 2):每个数只能使用一次。
解题:对于第一问:最长递增子序列的长度ans 很好求。现在对于求第二问,我们先记下求最长递增子序列时每个数属于哪些位置(即长度)。先来做个假设:如果一个数num在记录的第2个位置,且以num为最小值,能找到一个长度为ans的最长递增子序列,那么 我们可以再加一个数(第1个位置的数)到此序列中,此时最长递增子序列长度为 ans+1, 因ans < ans+1,所以与先前求出的最长递增子序列长度ans矛盾。所以假设不成立 。
结论:一个最长递增子序列的起始数一定是从第1个位置中的数开始。这也就是为什么下面用 最大流 来解的最重要的原因。
建图:(1)先每个看成一个点,然后把每个点i 拆成两个点建一条边:i -->(i+n) 边容为 1(拆点后,i 点只进不出,i+n点只出不入,除了自身边)。(2)再把源点s=0与第1个位置的每个点 i 建一条边容量为 1 :s-->i。(3)把每ans位置的每个点与汇点 t = 2*n+1 建一条边容量为1:(i+n)-->t。(4)第len长度的点 u 与第len+1长度的点 v 建一条边容量为1。满足的要求:题意中的 1)和 2)。
#include<stdio.h> #include<string.h> #include<queue> #include<vector> #include<algorithm> using namespace std; #define captype int const int MAXN = 100010; //点的总数 const int MAXM = 400010; //边的总数 const int INF = 1<<30; struct EDG{ int to,next; captype cap,flow; } edg[MAXM]; int eid,head[MAXN]; int gap[MAXN]; //每种距离(或可认为是高度)点的个数 int dis[MAXN]; //每个点到终点eNode 的最短距离 int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边 int pre[MAXN]; void init(){ eid=0; memset(head,-1,sizeof(head)); } //有向边 三个参数,无向边4个参数 void addEdg(int u,int v,captype c,captype rc=0){ edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++; } captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap)); memset(dis,0,sizeof(dis)); memcpy(cur,head,sizeof(head)); pre[sNode] = -1; gap[0]=n; captype ans=0; //最大流 int u=sNode; while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点 if(u==eNode){ //找到一条可增流的路 captype Min=INF ; int inser; for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min if(Min>edg[i].cap-edg[i].flow){ Min=edg[i].cap-edg[i].flow; inser=i; } for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){ edg[i].flow+=Min; edg[i^1].flow-=Min; //可回流的边的流量 } ans+=Min; u=edg[inser^1].to; continue; } bool flag = false; //判断能否从u点出发可往相邻点流 int v; for(int i=cur[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){ flag=true; cur[u]=pre[v]=i; break; } } if(flag){ u=v; continue; } //如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1 int Mind= n; for(int i=head[u]; i!=-1; i=edg[i].next) if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){ Mind=dis[edg[i].to]; cur[u]=i; } gap[dis[u]]--; if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径 //因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流 dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1 gap[dis[u]]++; if(u!=sNode) u=edg[pre[u]^1].to; //退一条边 } return ans; } int binarySearch(int* dp , int num ,int ans){ int l=1 , r = ans , mid; while(l<=r){ mid=(l+r)>>1; if(dp[mid]>=num) r = mid-1; else l=mid+1; } return l; } int main(){ int n , num[MAXN] , dp[MAXN]; while(scanf("%d",&n)>0){ for(int i=1; i<= n; i++) scanf("%d",&num[i]),dp[i]= INF; int ans=0; //最长递增子序列的长度 vector<vector<int> >vct; vct = vector<vector<int> >(n,vector<int>(0,0)); for(int i=1; i<= n; i++){ int len= binarySearch(dp,num[i],ans); vct[len].push_back(i); if(dp[len]>num[i]) dp[len]=num[i]; if(ans<len) ans=len; } init(); int s = 0, t = 2*n+1; for(int i=1; i<=n; i++) //拆点,自身点看作一条边,每个点只能用一次所以容量为1 addEdg( i , i+n , 1 ); for(int i=vct[1].size()-1; i>=0; i--) addEdg(s , vct[1][i] , 1); for(int i=vct[ans].size()-1; i>=0; i--) addEdg(vct[ans][i]+n , t , 1); for(int len = 1; len<ans; len++) for(int i = vct[len].size()-1 ; i>=0; i--){ int u=vct[len][i]; for(int j = vct[len+1].size()-1 ; j>=0; j--){ int v=vct[len+1][j]; if(u > v)break; //如果v位置在u的位置前方,则不能满足:1<=i1 < i2,...,<ik<=n if(num[u]>=num[v]) continue; addEdg(u+n , v , 1); } } int k=maxFlow_sap(s , t , t+1); //最长递增子序列的个数,相当寻找(s-->t)路的条数,每个边只能用一次 printf("%d\n%d\n",ans,k); } }