《Linux内核分析》第六周学习总结

学习内容:分析Linux内核创建一个新进程的过程

  1. 阅读理解task_struct数据结构
  2. 分析fork函数对应的内核处理过程sys_clone,理解创建一个新进程如何创建和修改task_struct数据结构;
  3. 使用gdb跟踪分析一个fork系统调用内核处理函数sys_clone ,验证对Linux系统创建一个新进程的理解,
  4. 特别关注新进程是从哪里开始执行的?为什么从哪里能顺利执行下去?即执行起点与内核堆栈如何保证一致。

一.进程分析

(一)进程控制块PCB——task_struct

对于一个进程来说,PCB就好像是他的记账先生,当一个进程被创建时PCB就被分配,然后有关进程的所有信息就全都存储在PCB中,例如,打开的文件,页表基址寄存器,进程号等等。在linux中PCB是用结构task_struct来表示的,我们首先来看一下task_struct的组成(代码位于linux/include/linux/Sched.h)

代码如下:

struct task_struct {

    long state; //表示进程的状态,-1表示不可执行,0表示可执行,>0表示停止
    long counter;/* 运行时间片,以jiffs递减计数 */
    long priority; /* 运行优先数,开始时,counter = priority,值越大,表示优先数越高,等待时间越长. */
    long signal;/* 信号.是一组位图,每一个bit代表一种信号. */
    struct sigaction sigaction[32]; /* 信号响应的数据结构, 对应信号要执行的操作和标志信息 */
    long blocked;   /* 进程信号屏蔽码(对应信号位图) */
/* various fields */
    int exit_code; /* 任务执行停止的退出码,其父进程会取 */
    unsigned long start_code,end_code,end_data,brk,start_stack;/* start_code代码段地址,end_code代码长度(byte),
end_data代码长度+数据长度(byte),brk总长度(byte),start_stack堆栈段地址 */
    long pid,father,pgrp,session,leader;/* 进程号,父进程号 ,父进程组号,会话号,会话头(发起者)*/
    unsigned short uid,euid,suid;/* 用户id 号,有效用户 id 号,保存用户 id 号*/
    unsigned short gid,egid,sgid;/* 组标记号 (组id),有效组 id,保存的组id */
    long alarm;/* 报警定时值 (jiffs数) */
    long utime,stime,cutime,cstime,start_time;/* 用户态运行时间 (jiffs数),
系统态运行时间 (jiffs数),子进程用户态运行时间,子进程系统态运行时间,进程开始运行时刻 */
    unsigned short used_math;/* 是否使用了协处理器 */
/* file system info */
    int tty;        /* 进程使用tty的子设备号. -1表示设有使用 */
    unsigned short umask; /* 文件创建属性屏蔽位 */
    struct m_inode * pwd; /* 当前工作目录 i节点结构 */
    struct m_inode * root; /* 根目录i节点结构 */
    struct m_inode * executable;/* 执行文件i节点结构 */
    unsigned long close_on_exec; /* 执行时关闭文件句柄位图标志. */
    struct file * filp[NR_OPEN];
/* 文件结构指针表,最多32项. 表项号即是文件描述符的值 */
    struct desc_struct ldt[3];
/* 任务局部描述符表.0-空,1-cs段,2-Ds和Ss段 */
    struct tss_struct tss; /* 进程的任务状态段信息结构 */
};

PCB task_struct中包含

  1.  进程状态
  2.  进程打开的文件
  3.  进程优先级信息

理解这一个过程可以用一个想象的框架:Linux通过复制父进程来创建一个新进程,复制一个PCB——task_struct

err = arch_dup_task_struct(tsk, orig);

要给新进程分配一个新的内核堆栈

ti = alloc_thread_info_node(tsk, node); tsk->stack = ti; setup_thread_stack(tsk, orig); //这里只是复制thread_info,而非复制内核堆栈

创建一个新进程在内核中的执行过程:fork、vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_fork来实现进程的创建;

1. fork,创建子进程

2. vfork,与fork类似,但是父子进程共享地址空间,而且子进程先于父进程运行。

3. clone,主要用于创建线程

这三个代码分别是:

SYSCALL_DEFINE0(fork)
{
    return do_fork(SIGCHLD, 0, 0, NULL, NULL);
}
#endif

SYSCALL_DEFINE0(vfork)
{
    return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
            0, NULL, NULL);
}

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
         int __user *, parent_tidptr,
         int __user *, child_tidptr,
         int, tls_val)
{
    return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
}

do_fork的代码:

long do_fork(unsigned long clone_flags,
          unsigned long stack_start,
          unsigned long stack_size,
          int __user *parent_tidptr,
          int __user *child_tidptr)
{
    struct task_struct *p;
    int trace = 0;
    long nr;// 复制进程描述符,返回创建的task_struct的指针
    p = copy_process(clone_flags, stack_start, stack_size,
             child_tidptr, NULL, trace);
    if (!IS_ERR(p)) {
        struct completion vfork;
        struct pid *pid;
        trace_sched_process_fork(current, p);
        // 取出task结构体内的pid
        pid = get_task_pid(p, PIDTYPE_PID);
        nr = pid_vnr(pid);
        if (clone_flags & CLONE_PARENT_SETTID)
            put_user(nr, parent_tidptr);
        // 如果使用的是vfork,那么必须采用某种完成机制,确保父进程后运行
        if (clone_flags & CLONE_VFORK) {
            p->vfork_done = &vfork;
            init_completion(&vfork);
            get_task_struct(p);
        }
        // 将子进程添加到调度器的队列,使得子进程有机会获得CPU
        wake_up_new_task(p);// 如果设置了 CLONE_VFORK 则将父进程插入等待队列,并挂起父进程直到子进程释放自己的内存空间
        // 保证子进程优先于父进程运行
        if (clone_flags & CLONE_VFORK) {
            if (!wait_for_vfork_done(p, &vfork))
                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
        }

        put_pid(pid);
    } else {
        nr = PTR_ERR(p);
    }
    return nr;
}

do_fork的事情:

1. 调用copy_process,将当期进程复制一份出来为子进程,并且为子进程设置相应地上下文信息。

2. 初始化vfork的完成处理信息(如果是vfork调用)

3. 调用wake_up_new_task,将子进程放入调度器的队列中,此时的子进程就可以被调度进程选中,得以运行。

4. 如果是vfork调用,需要阻塞父进程,知道子进程执行exec。

理解这一个过程提供一个想象的框架:Linux通过复制父进程来创建一个新进程,复制一个PCB——task_struct

err = arch_dup_task_struct(tsk, orig);

要给新进程分配一个新的内核堆栈

ti = alloc_thread_info_node(tsk, node); tsk->stack = ti; setup_thread_stack(tsk, orig); //这里只是复制thread_info,而非复制内核堆栈

从用户态的代码看fork();函数返回了两次,即在父子进程中各返回一次,父进程从系统调用中返回比较容易理解,子进程从系统调用中返回,那它在系统调用处理过程中的哪里开始执行的呢?这就涉及子进程的内核堆栈数据状态和task_struct中thread记录的sp和ip的一致性问题,这是在哪里设定的?copy_thread in copy_process

*childregs = *current_pt_regs(); //复制内核堆栈

childregs->ax = 0; //为什么子进程的fork返回0,这里就是原因!

p->thread.sp = (unsigned long) childregs; //调度到子进程时的内核栈顶

p->thread.ip = (unsigned long) ret_from_fork; //调度到子进程时的第一条指令地址

(二)进程创建的关键

(1)copy_process函数:在进程创建的do_fork函数中调用,主要完成进程数据结构,各种资源的初始化。初始化方式可以重新分配,也可以共享父进程资源,

大体流程:

1. 检查各种标志位
2. 调用dup_task_struct复制一份task_struct结构体,作为子进程的进程描述符。
3. 检查进程的数量限制。
4. 初始化定时器、信号和自旋锁。
5. 初始化与调度有关的数据结构,调用了sched_fork,这里将子进程的state设置为TASK_RUNNING。
6. 复制所有的进程信息,包括fs、信号处理函数、信号、内存空间(包括写时复制)等。
7. 调用copy_thread,这又是关键的一步,这里设置了子进程的堆栈信息。
8. 为子进程分配一个pid
9. 设置子进程与其他进程的关系,以及pid、tgid等

关键地方:
tsk = alloc_task_struct_node(node);//为task_struct开辟内存
ti = alloc_thread_info_node(tsk, node);//ti指向thread_info的首地址,同时也是系统为新进程分配的两个连续页面的首地址。
err = arch_dup_task_struct(tsk, orig);//复制父进程的task_struct信息到新的task_struct里, (dst = src;)
tsk->stack = ti;task的对应栈
setup_thread_stack(tsk, orig);//初始化thread info结构
set_task_stack_end_magic(tsk);//栈结束的地址设置数据为栈结束标示(for overflow detection)

代码如下:

/*
    创建进程描述符以及子进程所需要的其他所有数据结构
    为子进程准备运行环境
*/
static struct task_struct *copy_process(unsigned long clone_flags,
                    unsigned long stack_start,
                    unsigned long stack_size,
                    int __user *child_tidptr,
                    struct pid *pid,
                    int trace)
{
    int retval;
    struct task_struct *p;

    // 分配一个新的task_struct,此时的p与当前进程的task,仅仅是stack地址不同
    p = dup_task_struct(current);

    // 检查该用户的进程数是否超过限制
    if (atomic_read(&p->real_cred->user->processes) >=
            task_rlimit(p, RLIMIT_NPROC)) {
        // 检查该用户是否具有相关权限,不一定是root
        if (p->real_cred->user != INIT_USER &&
            !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
            goto bad_fork_free;
    }

    retval = -EAGAIN;
    // 检查进程数量是否超过 max_threads,后者取决于内存的大小
    if (nr_threads >= max_threads)
        goto bad_fork_cleanup_count;

    // 初始化自旋锁

    // 初始化挂起信号

    // 初始化定时器

    // 完成对新进程调度程序数据结构的初始化,并把新进程的状态设置为TASK_RUNNING
    retval = sched_fork(clone_flags, p);
    // .....

    // 复制所有的进程信息
    // copy_xyz

    // 初始化子进程的内核栈
    retval = copy_thread(clone_flags, stack_start, stack_size, p);
    if (retval)
        goto bad_fork_cleanup_io;

    if (pid != &init_struct_pid) {
        retval = -ENOMEM;
        // 这里为子进程分配了新的pid号
        pid = alloc_pid(p->nsproxy->pid_ns_for_children);
        if (!pid)
            goto bad_fork_cleanup_io;
    }
    /* ok, now we should be set up.. */
    // 设置子进程的pid
    p->pid = pid_nr(pid);
    // 如果是创建线程
    if (clone_flags & CLONE_THREAD) {
        p->exit_signal = -1;
        // 线程组的leader设置为当前线程的leader
        p->group_leader = current->group_leader;
        // tgid是当前线程组的id,也就是main进程的pid
        p->tgid = current->tgid;
    } else {
        if (clone_flags & CLONE_PARENT)
            p->exit_signal = current->group_leader->exit_signal;
        else
            p->exit_signal = (clone_flags & CSIGNAL);
        // 创建的是进程,自己是一个单独的线程组
        p->group_leader = p;
        // tgid和pid相同
        p->tgid = p->pid;
    }
    if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
        // 如果是创建线程,那么同一线程组内的所有线程、进程共享parent
        p->real_parent = current->real_parent;
        p->parent_exec_id = current->parent_exec_id;
    } else {
        // 如果是创建进程,当前进程就是子进程的parent
        p->real_parent = current;
        p->parent_exec_id = current->self_exec_id;
    }

    // 将pid加入PIDTYPE_PID这个散列表
    attach_pid(p, PIDTYPE_PID);
    // 递增 nr_threads的值
    nr_threads++;

    // 返回被创建的task结构体指针
    return p;
}

(2)copy_thread函数:为子进程准备了上下文堆栈信息

copy_thread的流程如下:

1. 获取子进程寄存器信息的存放位置
2. 对子进程的thread.sp赋值,将来子进程运行,这就是子进程的esp寄存器的值。
3. 如果是创建内核线程,那么它的运行位置是ret_from_kernel_thread,将这段代码的地址赋给thread.ip,之后准备其他寄存器信息,退出。
4. 将父进程的寄存器信息复制给子进程。
5. 将子进程的eax寄存器值设置为0,所以fork调用在子进程中的返回值为0。
6. 子进程从ret_from_fork开始执行,所以它的地址赋给thread.ip,也就是将来的eip寄存器。
// 初始化子进程的内核栈
int copy_thread(unsigned long clone_flags, unsigned long sp,
    unsigned long arg, struct task_struct *p)
{

    // 获取寄存器信息
    struct pt_regs *childregs = task_pt_regs(p);
    struct task_struct *tsk;
    int err;

    // 栈顶 空栈
    p->thread.sp = (unsigned long) childregs;
    p->thread.sp0 = (unsigned long) (childregs+1);
    memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

    // 如果是创建的内核线程
    if (unlikely(p->flags & PF_KTHREAD)) {
        /* kernel thread */
        memset(childregs, 0, sizeof(struct pt_regs));
        // 内核线程开始执行的位置
        p->thread.ip = (unsigned long) ret_from_kernel_thread;
        task_user_gs(p) = __KERNEL_STACK_CANARY;
        childregs->ds = __USER_DS;
        childregs->es = __USER_DS;
        childregs->fs = __KERNEL_PERCPU;
        childregs->bx = sp; /* function */
        childregs->bp = arg;
        childregs->orig_ax = -1;
        childregs->cs = __KERNEL_CS | get_kernel_rpl();
        childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
        p->thread.io_bitmap_ptr = NULL;
        return 0;
    }

    // 将当前进程的寄存器信息复制给子进程
    *childregs = *current_pt_regs();
    // 子进程的eax置为0,所以fork的子进程返回值为0
    childregs->ax = 0;
    if (sp)
        childregs->sp = sp;

    // 子进程从ret_from_fork开始执行
    p->thread.ip = (unsigned long) ret_from_fork;
    task_user_gs(p) = get_user_gs(current_pt_regs());

    return err;
}

从流程中看出,子进程复制了父进程的上下文信息,仅仅对某些地方做了改动,运行逻辑和父进程完全一致。

子进程从ret_from_fork处开始执行。

(3)dup_ task_ struct函数

流程如下:

1.先调用alloc_task_struct_node分配一个task_struct结构体。
2.调用alloc_thread_info_node,分配了一个union。这里分配了一个thread_info结构体,还分配了一个stack数组。返回值为ti,实际上就是栈底。
3.tsk->stack = ti将栈底的地址赋给task的stack变量。
4.最后为子进程分配了内核栈空间。
5.执行完dup_task_struct之后,子进程和父进程的task结构体,除了stack指针之外,完全相同。

(三)新进程的执行

新进程从ret_from_fork处开始执行,子进程的运行是由这几处保证的:

1. dup_task_struct中为其分配了新的堆栈
2. copy_process中调用了sched_fork,将其置为TASK_RUNNING
3. copy_thread中将父进程的寄存器上下文复制给子进程,这是非常关键的一步,这里保证了父子进程的堆栈信息是一致的。
4. 将ret_from_fork的地址设置为eip寄存器的值,这是子进程的第一条指令。

(四)子进程系统调用处理过程
*childregs = *current_pt_regs(); //复制内核堆栈
childregs->ax = 0; //子进程的fork返回0的原因
p->thread.sp = (unsigned long) childregs; //调度到子进程时的内核栈顶
p->thread.ip = (unsigned long) ret_from_fork; //调度到子进程时的第一条指令地址
实践:使用gdb跟踪分析一个fork系统调用内核处理函数sys_clone 

启动MenuOS和gdb调试

cd LinuxKernel
rm menu -rf
git clone https://github.com/mengning/menu.git
cd menu
mv test_fork.c test.c
make rootfs
qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -S

在新窗口中启动调试gdb file linux-3.18.6/vmlinux target remote:1234
实验截图如下:

四、总结


可以将上面繁琐的进程创建过程总结为一下的几步:

1、调用fork()函数引发0x80中断 
2、调用sys_fork 
3、通过find_empty_process为新进程分配一个进程号 
4、通过copy_process函数使子进程复制父进程的资源,并进行一些个性化设置后,返回进程号。

 
时间: 2024-10-24 13:51:48

《Linux内核分析》第六周学习总结的相关文章

《网络攻防》第九周学习总结

Nmap使用实践 我们使用kali1.08攻击机对Linux靶机222.28.136.226进行nmap的相关实践,扫描其他靶机类似. 1.测试是否在线 2.查看靶机开放了哪些TCP和UDP端口及安装了什么网络服务: 3.查看靶机的操作系统版本 nmap使用方法总结: 通过主机探测,确定测试目标地址后,往往需要对主机信息做更完善的扫描.nmap可以完成以下任务:主机探测.端口扫描.版本检测.系统检测.支持探测脚本的编写.实际应用场合:通过对设备或者防火墙的探测来审计他的安全性:探测目标主机所开放

# 2018-2019-1 20165317 第六周学习总结

2018-2019-1 20165317 第六周学习总结 教材学习内容总结 输入/输出(I/O)是主存和外部设备(I/O设备)(如磁盘驱动器.终端.网络)之间拷贝数据的过程.输入是从I/O设备拷贝到主存.反之则反. 10.1Unix I/O Unix文件就是一个m字节的序列:b0,b1,b2-.bm-1.所有的I/O设备都被虚拟化为文件.所有的输入输出都是在当成相对应的文件的读写.将设备映射为文件,Unix内核引出一个应用接口,Unix I/O. 输入输出的执行方式: 打开文件:打开文件,内核会

20145317《信息安全系统设计基础》第六周学习总结(1)

20145317<信息安全系统设计基础>第六周学习总结(1) 第四章 处理器体系结构 指令体系结构:一个处理器支持的指令和指令的字节级编码 4.1Y86指令集体系结构 Y86:包括定义各种状态元素.指令集和它们的编码.一组编程规范和异常事件处理. Y86程序中的每条指令都会读取或修改处理器状态的某些部分.Y86具体包括:8个程序寄存器.3个条件码ZF\SF\OF.程序计数器(PC) Y86用虚拟地址引用存储器位置. 程序状态的最后一个部分是状态码Stat,它表明程序执行的总体状态. 注意:条件

20145222《信息安全系统设计基础》第六周学习总结(1)

20145222<信息安全系统设计基础>第六周学习总结(1) 第四章 处理器体系结构 指令体系结构:一个处理器支持的指令和指令的字节级编码 4.1Y86指令集体系结构 · Y86:包括定义各种状态元素.指令集和它们的编码.一组编程规范和异常事件处理. · Y86程序中的每条指令都会读取或修改处理器状态的某些部分.· Y86具体包括:8个程序寄存器.3个条件码ZF\SF\OF.程序计数器(PC) · Y86用虚拟地址引用存储器位置. 程序状态的最后一个部分是状态码Stat,它表明程序执行的总体状

《Linux内核分析》第六周学习笔记

<Linux内核分析>第六周学习笔记 进程的描述和创建 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 [学习视频时间:1小时 撰写博客时间:2小时] [学习内容:进程创建的过程.使用gdb跟踪分析内核处理函数sys_clone] 一.进程的描述 1.1 进程描述符task_struct数据结构(一) 1. 进程控制块PCB——task_struct 为了管理进程,内核

20145307《信息安全系统设计基础》第六周学习总结

20145307<信息安全系统设计基础>第六周学习总结 教材学习内容总结 Y86指令集体系结构 内容:定义一个指令集体系结构,包括定义各种状态元素.指令集和它们的编码.一组编程规范和异常事件处理. 程序员可见状态 Y86程序中的每条指令都会读取或修改处理器状态的某些部分. Y86具体包括:8个程序寄存器.3个条件码ZF\SF\OF.程序计数器(PC). Y86用虚拟地址引用存储器位置. 程序状态的最后一个部分是状态码Stat,它表明程序执行的总体状态. Y86指令 IA32指令集的一个子集,只

20145301第六周学习总结

20145301第六周学习总结 教材学习内容总结 第十章 输入/输出 10.1 InputStream与OutputStream InputStream与OutputStream  流(Stream)是对「输入输出」的抽象,注意「输入输出」是相对程序而言的  InputStream与OutputStream InputStream.OutStream提供串流基本操作,如果想要为输入/输出的数据做加工处理,则可以使用打包器类.常用的打包器具备缓冲区作用的BufferedOutputStream.B

20145319 第六周学习总结

20145319 <Java程序设计>第六周学习总结 教材学习内容总结 本周学习教材的第十.十一章,主要讲述了串流,字符处理和线程以及并行API 1. 输入输出 串流:1Java中的数据有来源(source)和目的地(destination),衔接两者的就是串流对象2串流设计:在不知道限定数据来源和目的地时,也可以依赖抽象的InputStream和Outstream来编写一个dump()方法,方便以后使用3InputStream和OutputStream:在java中,输入串流代表对象为jav

LINUX内核分析第六周学习总结——进程的描述和进程的创建

LINUX内核分析第六周学习总结——进程的描述和进程的创建 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.知识概要 进程的描述 进程描述符task_struct数据结构(一) 进程描述符task_struct数据结构(二) 进程的创建 进程的创建概览及fork一个进程的用户态代码 理解进程创建过程复杂代码的方法 浏览进程创建过程相关的关键代码 创建的新进程是从哪里开始执行的

20145311 《信息安全系统设计基础》第六周学习总结

20145311 <信息安全系统设计基础>第六周学习总结 教材学习内容总结 书上那几个表还是挺重要的 一个程序编译成在一种机器上运行,就不能在另一种机器上运行寄存器%esp被入栈.出栈.调用和返回指令作为栈指针程序计数器PC存放当前正在执行指令的地址三个一位的条件吗:ZF.SF.OF保存着最近的算数运算或逻辑运算所造成影响的有关信息Y86指令集:每个指令的第一个字节表明指令的类型,高4位是代码部分,低4位是功能部分指令集的一个重要性质就是字节编码必须有唯一的解释IA32(复杂指令集计算机CIS