算法9---算法9---二叉树的遍历

在这里我们理一遍二叉树的递归和非递归遍历

一.前序遍历

前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。

1.递归实现

1 void preOrder1(BinTree *root)     //递归前序遍历
2 {
3     if(root!=NULL)
4     {
5         cout<<root->data<<" ";
6         preOrder1(root->lchild);
7         preOrder1(root->rchild);
8     }
9 }

2.非递归实现

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P:

1)访问结点P,并将结点P入栈;

2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

 1 void preOrder2(BinTree *root)     //非递归前序遍历
 2 {
 3     stack<BinTree*> s;
 4     BinTree *p=root;
 5     while(p!=NULL||!s.empty())
 6     {
 7         while(p!=NULL)
 8         {
 9             cout<<p->data<<" ";
10             s.push(p);
11             p=p->lchild;
12         }
13         if(!s.empty())
14         {
15             p=s.top();
16             s.pop();
17             p=p->rchild;
18         }
19     }
20 }

二.中序遍历

中序遍历按照“左孩子-根结点-右孩子”的顺序进行访问。

1.递归实现

1 void inOrder1(BinTree *root)      //递归中序遍历
2 {
3     if(root!=NULL)
4     {
5         inOrder1(root->lchild);
6         cout<<root->data<<" ";
7         inOrder1(root->rchild);
8     }
9 } 

2.非递归实现

根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

对于任一结点P,

1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

3)直到P为NULL并且栈为空则遍历结束

 1 void inOrder2(BinTree *root)      //非递归中序遍历
 2 {
 3     stack<BinTree*> s;
 4     BinTree *p=root;
 5     while(p!=NULL||!s.empty())
 6     {
 7         while(p!=NULL)
 8         {
 9             s.push(p);
10             p=p->lchild;
11         }
12         if(!s.empty())
13         {
14             p=s.top();
15             cout<<p->data<<" ";
16             s.pop();
17             p=p->rchild;
18         }
19     }
20 } 

三.后序遍历

后序遍历按照“左孩子-右孩子-根结点”的顺序进行访问。

1.递归实现

1 void postOrder1(BinTree *root)    //递归后序遍历
2 {
3     if(root!=NULL)
4     {
5         postOrder1(root->lchild);
6         postOrder1(root->rchild);
7         cout<<root->data<<" ";
8     }
9 } 

2.非递归实现

后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

 1 void postOrder2(BinTree *root) //非递归后序遍历
 2 {
 3 stack<BTNode*> s;
 4 BinTree *p=root;
 5 BTNode *temp;
 6  while(p!=NULL||!s.empty())
 7 {
 8  while(p!=NULL) //沿左子树一直往下搜索,直至出现没有左子树的结点
 9  {
10 BTNode *btn=(BTNode *)malloc(sizeof(BTNode));
11 btn->btnode=p;
12 btn->isFirst=true;
13 s.push(btn);
14 p=p->lchild;
15 }
16  if(!s.empty())
17 {
18 temp=s.top();
19 s.pop();
20  if(temp->isFirst==true) //表示是第一次出现在栈顶
21  {
22 temp->isFirst=false;
23 s.push(temp);
24 p=temp->btnode->rchild;
25 }
26  else //第二次出现在栈顶
27  {
28 cout<<temp->btnode->data<<" ";
29 p=NULL;
30 }
31 }
32 }
33 }

第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

 1 void postOrder3(BinTree *root)     //非递归后序遍历
 2 {
 3     stack<BinTree*> s;
 4     BinTree *cur;                      //当前结点
 5     BinTree *pre=NULL;                 //前一次访问的结点
 6     s.push(root);
 7     while(!s.empty())
 8     {
 9         cur=s.top();
10         if((cur->lchild==NULL&&cur->rchild==NULL)||
11            (pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))
12         {
13             cout<<cur->data<<" ";  //如果当前结点没有孩子结点或者孩子节点都已被访问过
14               s.pop();
15             pre=cur;
16         }
17         else
18         {
19             if(cur->rchild!=NULL)
20                 s.push(cur->rchild);
21             if(cur->lchild!=NULL)
22                 s.push(cur->lchild);
23         }
24     }
25 }
时间: 2024-10-12 17:32:31

算法9---算法9---二叉树的遍历的相关文章

用java实现二叉树的遍历算法

用java实现二叉树的遍历算法用java实现二叉树的遍历算法,编写二叉树类BinaryTree代码如下:package package2; public class BinaryTree { int data; //根节点数据BinaryTree left; //左子树BinaryTree right; //右子树 public BinaryTree(int data) //实例化二叉树类{this.data = data;left = null;right = null;} public vo

4-9 二叉树的遍历 (25分)

4-9 二叉树的遍历   (25分) 输出样例(对于图中给出的树): Inorder: D B E F A G H C I Preorder: A B D F E C G H I Postorder: D E F B H G I C A Levelorder: A B C D F G I E H 代码:(都是遍历的算法) 1 // 4-9 二叉树的遍历 2 // 3 // Created by Haoyu Guo on 04/02/2017. 4 // Copyright ? 2017 Haoy

【LeetCode-面试算法经典-Java实现】【107-Binary Tree Level Order Traversal II(二叉树层序遍历II)】

[107-Binary Tree Level Order Traversal II(二叉树层序遍历II)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root). For example

【转】算法之二叉树各种遍历

http://blog.csdn.net/sjf0115/article/details/8645991 树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用. 二叉树是每个结点最多有两个子树的有序树.通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:

二叉树常见遍历算法

这几天在复习关于树的各种算法,做了一些题,也搜索了网上各种算法,现在来总结一下树的各种常见算法.本文涵盖: 二叉树先中后序遍历(递归&非递归)算法 层次遍历(正序&逆序&锯齿形)非递归算法 二叉树深度算法 结点总数算法 1.二叉树先序非递归遍历 //先序非递归遍历 public ArrayList<Integer> preorderTraversal2(TreeNode root) { Stack<TreeNode> stack = new Stack<

算法之二叉树各种遍历

树形结构是一类重要的非线性数据结构,当中以树和二叉树最为经常使用. 二叉树是每一个结点最多有两个子树的有序树.通常子树的根被称作"左子树"(left subtree)和"右子树"(right subtree).二叉树常被用作二叉查找树和二叉堆或是二叉排序树.二叉树的每一个结点至多仅仅有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第i层至多有2的 i -1次方个结点:深度为k的二叉树至多有2^(k) -1个结点:对不论什么一棵二叉树

【LeetCode-面试算法经典-Java实现】【102-Binary Tree Level Order Traversal(二叉树层序遍历)】

[102-Binary Tree Level Order Traversal(二叉树层序遍历)] [LeetCode-面试算法经典-Java实现][所有题目目录索引] 原题 Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level). For example: Given binary tree {3,9,20,#,#,15

【算法与数据结构】二叉树的 中序 遍历

前一篇写了二叉树的先序遍历,本篇记录一下二叉树的中序遍历,主要是非递归形式的中序遍历. 由于距离上篇有好几天了,所以这里把二叉树的创建和存储结构也重复的写了一遍. 二叉树如下 二叉树的存储方式依然是二叉链表方式,其结构如下 typedef struct _tagBinTree { unsigned char value; struct _tagBinTree* left; struct _tagBinTree* right; }BinTree, *PBinTree; 先序递归形式的创建二叉树代码

一步一步写算法(之二叉树广度遍历)

原文:一步一步写算法(之二叉树广度遍历) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 在二叉树的遍历当中,有一种遍历方法是不常见的,那就是广度遍历.和其他三种遍历方法不同,二叉树的广度遍历需要额外的数据结构来帮助一下?什么数据结构呢?那就是队列.因为队列具有先进先出的特点,这个特点要求我们在遍历新的一层数据之前,必须对上一次的数据全部遍历结束.暂时还没有掌握队列知识的朋友可以看一看我的这一篇博客-队列. a)下面是新添加的队列数据结构

一步一步写算法(之二叉树深度遍历)

原文:一步一步写算法(之二叉树深度遍历) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 深度遍历是软件开发中经常遇到的遍历方法.常用的遍历方法主要有下面三种:(1)前序遍历:(2)中序遍历:(3)后序遍历.按照递归的方法,这三种遍历的方法其实都不困难,前序遍历就是根-左-右,中序遍历就是左-根-右,后续遍历就是左-右-根.代码实现起来也不复杂. 1)前序遍历 void preorder_traverse(TREE_NODE* pTree