机器学习基础题目

1. 在深度学习中,涉及到大量矩阵相乘,现在需要计算三个稠密矩阵A,B,C的乘积ABC,假设三个矩阵的尺寸分别为m*n,n*p,p*q,且m<n<p<q,以下计算顺序效率最高的是:

(AB)C

解析:首先,根据简单的矩阵知识,因为 A*B , A 的列数必须和 B 的行数相等。因此,可以排除C 选项。

m*n 的矩阵 A 和 n*p 的矩阵 B 的乘积,得到 m*p 的矩阵 A*B ,而 A*B 的每个元素需要 n 次乘法和 n-1 次加法,忽略加法,共需要 m*n*p 次乘法运算。

同样情况分析 A*B 之后再乘以 C 时的情况,共需要 m*p*q次乘法运算。因此,A 选项的(AB)C 需要的乘法次数是 m*n*p+m*p*q 。

同理分析, B 选项的 A (BC)需要的乘法次数是 n*p*q+m*n*q 。由于 m*n*p< m*n*q , m*p*q<n*p*q。

2.  常见的判别式模型有:

Logistic regression

Linear discriminant analysis

Supportvector machines

Boosting

Conditional random fields

Linear regression

Neural networks

常见的生成式模型有:

Gaussian mixture model and othertypes of mixture model

Hidden Markov model

NaiveBayes

AODE

Latent Dirichlet allocation

Restricted Boltzmann Machine

3.概率质量函数 (probability mass function,PMF)是离散随机变量在各特定取值上的概率。

   概率密度函数(p robability density function,PDF )是对 连续随机变量 定义的,本身不是概率,只有对连续随机变量的取值进行积分后才是概率。

   累积分布函数(cumulative distribution function,CDF) 能完整描述一个实数随机变量X的概率分布,是概率密度函数的积分。对於所有实数x ,与pdf相对。

4. 在统计模式识分类问题中,当先验概率未知时,可以使用

N-P判决
最小最大损失准则

解析:在贝叶斯决策中,对于先验概率p(y),分为已知和未知两种情况。

1. p(y)已知,直接使用贝叶斯公式求后验概率即可;

2. p(y)未知,可以使用聂曼-皮尔逊决策(N-P决策)来计算决策面。

最大最小损失规则主要就是使用解决最小损失规则时先验概率未知或难以计算的问题的。

5. CRF模型对于HMM和MEMM模型的优势:

CRF优点:特征灵活,可容纳较多的上下文信息,能够做到全局最优;

CRF缺点:训练代价大,度咋读高,速度慢;

1)CRF没有HMM那样严格的独立性假设条件,因而可以容纳任意的上下文信息。特征设计灵活(与ME一样)-------- 与HMM比较
2)同时,由于CRF计算全局最优输出节点的条件概率,它还克服了最大熵马尔可夫模型标记偏置(Label-bias)的缺点。 --------- 与MEMM比较
3)CRF是在给定需要标记的观察序列的条件下,计算整个标记序列的联合概率分布,而不是在给定当前状态条件下,定义下一个状态的状态分;--------- 与ME比较

6. 在HMM中,如果已知观察序列和产生观察序列的状态序列,那么可用以下哪种方法直接进行参数估计:极大似然估计。

  • EM算法: 只有观测序列,无状态序列时来学习模型参数,即Baum-Welch算法
  • 维特比算法: 用动态规划解决HMM的预测问题,不是参数估计
  • 前向后向:用来算概率
  • 极大似然估计:即观测序列和相应的状态序列都存在时的监督学习算法,用来估计参数

在给定观测序列和对应的状态序列估计模型参数,可以利用极大似然发估计。

如果给定观测序列,没有对应的状态序列,才用EM,将状态序列看不不可测的隐数据。

7.分支定界法(branch and bound)是一种求解 整数规划 问题的最常用算法。

这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。分支定界法是计算机最擅长 的广义搜索穷举算法。

分支定界法是一种搜索与迭代的方法,选择不同的分支变量和子问题进行分支。

对于两个变量的整数规划问题,使用网格的方法有时更为简单。

该算法的主要思路是:定义一个满足单调性条件的评价准则函数,对两个特征子集S1和S2而言,如果S1是S2的子集, 那么S1所对应的评价函数值必须要小于S2所对应的评价函数值,在定义了该评价函数的前提下,该算法对最终特征子集的选择过程可以用一棵树来描述,树根是所有特征的集合从树根可分性判据值和事先定义的最佳特征子集的特征数目,搜索满足要求的特征子集

但存在3个问题:

1于该算法无法对所有的特征依据其重要性进行排序!如何事先确定最优特征子集中特征的数目是一个很大的问题2合乎问题要求的满足单调性的可分性判据难以设计3当处理高维度多分类问题时!算法要运行多次!计算效率低下的问题将非常明显

时间: 2024-10-17 06:00:37

机器学习基础题目的相关文章

【机器学习基础】混合和装袋

融合模型(Aggregation Model) 如果我们已经得到了一些特征或者假设,它们和我们做机器学习的目标有若干的一致性的话,我们可以将这些假设综合起来,让预测效果变得更好,这样的模型被称为融合模型. 融合模型是通过混合(mix)和组合(combine)一些假设的方式,得到更好的预测结果. 下面列举了四种不同的混合组合方式,并给出了数学表示形式: 当有多个假设时,我们选择检验误差最小的假设作为我们最信任的目标函数: 我们现在有多个假设,我们可以给每个假设一个投票的权利,综合所有假设的投票结果

机器学习实战笔记1(机器学习基础)

1:如何选择合适的算法 2:python简介 (1)   python的优势:相对于matlab,matlab单个软件授权就要花费数千美元,也没有一个有影响力的大型开源项目.相对于c++/c/java,完成简单的操作就需要编写大量的代码:而如今我们应该花费更多的时间去处理数据内在的含义,而无需花费太多精力解决计算机如何得到数据结果(python简洁) (2)   python具有numpy科学函数库,它是一个使运算更容易.执行更迅速的库:另外还有matplotlib绘图工具. 3:python语

第一章:机器学习基础

第一部分:分类 本书前两部分主要探讨监督学习(supervisedieaming).在监督学习的过程中,我们只需要给定输入样本集,机器就可以从中推演出指定目标变量的可能结果.监督学习相对比较简单,机器只需从输入数据中预测合适的模型,并从中计算出目标变量的结果.      监督学习一般使用两种类型的目标变量:标称型和数值型.标称型目标变量的结果只在有限目标集中取值,如真与假.动物分类集合{爬行类.鱼类.哺乳类.两栖类.植物.真菌};数值型目标变量则可以从无限的数值集合中取值,如0.100.42.0

【机器学习实战】第1章 机器学习基础

第1章 机器学习基础 机器学习 概述 机器学习就是把无序的数据转换成有用的信息. 获取海量的数据 从海量数据中获取有用的信息 我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的意义. 机器学习 场景 例如:识别动物猫 模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫. 机器学习(数据学习):人们通过阅读进行学习,观察它会叫.小眼睛.两只耳朵.四条腿.一条尾巴,得到结论,从而判断它就是猫. 深度学习(深入数据):人们通过深入了解它,发现它会'喵喵'的叫.与同类的猫科动物

hdu 1874 畅通工程续 dijsktra(基础题目)

又是一道最短路基础题目,注意两点就可以了: 1.输入的时候可能会两点之间有多条路,选最短的存起来. 2.判断有没有路径存在,可以判断一下终点到起点的距离是否小于原来初始化的最大值,如果是就输出结果,否则输出-1 代码: #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<vector> #inc

机器学习实战之第一章 机器学习基础

第1章 机器学习基础 机器学习 概述 机器学习就是把无序的数据转换成有用的信息. 获取海量的数据 从海量数据中获取有用的信息 我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的意义. 机器学习 场景 例如:识别动物猫 模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫. 机器学习(数据学习):人们通过阅读进行学习,观察它会叫.小眼睛.两只耳朵.四条腿.一条尾巴,得到结论,从而判断它就是猫. 深度学习(深入数据):人们通过深入了解它,发现它会'喵喵'的叫.与同类的猫科动物

java基础题目总结

有些基础题目由于工作中用的比较少但却又是不可少的,这样回答起来就会反应慢,不确定,不准确,特此开了文章记录遇到的不确定或者回答比较拗口的问题. 1.servlet是单例的吗,是安全的吗,是多线程吗 servlet是单例的,根据web.xml实例化一次后,其他访问通过多线程的方式调用servlet实例. 因此,关于多线程访问共享变量的安全性问题已经是老生常谈了.这里只要知道servlet是单例的,其他问题也就解决了.servlet的实现方式决定了安全性.成员变量是否是静态的,是否上锁?关于调用成员

【机器学习基础】线性可分支持向量机

引言 接下里的一系列有关机器学习的博文,我将具体的介绍常用的算法,并且希望在这个过程中尽可能地结合实际应用更加深入的理解其精髓,希望所付出的努力能得到应有的回报. 接下来的有关机器学习基础博文主要根据机器学习技法课程的学习,围绕特征转换(feature transforms)这个主要工具,从以下三个方向进行探讨: 如果现在有很多特征转换可以使用的时候,我们该如何运用这些特征转换,如何控制特征转换中的复杂度的问题,从这个角度刺激了支持向量机(Support Vector Machine)算法的发展

数论基础题目八题【欧几里得】【筛法素数】【中国剩余定理】

之前看的数论的知识,现在做几道题目找找感觉..... poj 1061 传送门 题目大意,给你x,y,m,n,L.代表青蛙a的坐标x,青蛙b的坐标y,青蛙a一次跳的距离m,青蛙b一次跳的距离n,以及mod的值L,求经过多少次跳相遇.即求:(m-n)*x0=(x-y)(mod L);  模线性方程的解,不过要注意处理,因为(m-n)和(x-y)有可能是负的,如果(m-n)是负的,则直接对俩数取负数,下面就是对 ((x-y)+L)%L. 然后就能用modular_linear_equation(LL