TCP的阻塞和重传

TCP的阻塞和重传

TCP的阻塞和重传机制

网络拥堵

现在网络上大部分的网络请求都是以TCP的方式进行传输的了。网络链路是固定的,各种链路情况也是不一样的。网络拥堵一直是TCP协议设计和使用的时候尽力要避免的。比如,从TCP协议的网络包协议设计来看,TCP使用一发一答的ACK的网络包确认方式,而不是使用NAK这种会增加确认包的方式来做确认机制。这个就是在尽力降低网络上的包传递数量,避免网络拥堵。

还有哪些控制网络拥堵的方式呢?

慢启动

当一个连接连接上网络的时候,并不应该一次向网络中就发送大量的数据包,否则的话,如果网络链路状况不是很好的情况,这些网络包可能会加重网络拥堵的情况。所以最初TCP连接建立之后,发送网络包的大小是逐渐增长的,最开始是1个最大报文大小,然后是指数级增长。这个就是慢启动机制。

但是到了一个数值,就不能再进行指数增长了,这个时候,网络包增长就从指数增长改成线性增长,就是一次增加一个MSS。这个就是拥塞避免阶段。

Nagle算法

如果互联网上传递的都是小包,那绝对是个灾难,每个网络请求都耗费比较大的资源,如果一份数据分为零零散散很多份小包,每个网络传输都只传输一个小包,那么是典型的浪费资源,增加拥堵。糊涂窗口综合症就是发送方和接收方糊里糊涂达成的协商是传送小包。

为了解决这个问题,很多方法应运而生,Nagle算法就是其中一个方法。

Nagle算法规定了,发送方网络链路上一个连接只能有一个未获得ACK的请求包。这个就意味着,发送方只有等待上一个请求的ACK回来之后才能发送下一个请求,这样两个请求过程中间,发送方的缓存区就存储了足够滑动窗口大小的包进行传递,这样就有效避免了大量的小包产生。

Cork算法

另外一种解决糊涂窗口综合症的方法就是Cork算法。这个算法比Nagle算法更激进一些,干脆直接计算出一个值,当发送方的滑动窗口大小小于这个值的时候,不进行数据包的发送。这样这个算法就能有效直接杜绝小包的出现了。当然可能会导致数据有一定的延迟性了。

Nagle和Cork算法都是在发送方进行控制,两个算法的着重点不同,Nagle算法着重点在于避免小包,更多是端到端的优化。Cork算法则是为了提高网络的利用率。

延迟ACK

从接收方也有能力防止糊涂窗口综合症。延迟ACK算法就是接收方并不是收到请求之后立刻发送ACK,而是开启一个计时器,等到计时器结束的时候,才发送ACK。或者是接收方在需要回发送请求的时候,顺带着把上个请求的ACK发送回去了。这个机制如果配合Nagle算法,能让连接的滑动窗口达到一个预期的比较好的值。

重传机制

上面都是防止阻塞的方法,但是万一阻塞了呢?发出去的请求包在规定时间内没有收到ACK,不管是请求包丢失,还是ACK包丢失,还是网络延迟,总之,这里都是需要有个重传机制的。TCP的重传机制有两种:超时重传和快速重传。

超时重传

说白了就是在请求包发出去的时候,开启一个计时器,当计时器达到时间之后,没有收到ACK,则就进行重发请求的操作,一直重发直到达到重发上限次数或者收到ACK。

快速重传

还有一种机制就是快速重传,当接收方收到的数据包是不正常的序列号,那么接收方会重复把应该收到的那一条ACK重复发送,这个时候,如果发送方收到连续3条的同一个序列号的ACK,那么就会启动快速重传机制,把这个ACK对应的发送包重新发送一次。具体可以参考:

参考

网络性能排查之TCP重传与重复ACK
TCP慢启动、拥塞避免、快速重传、快速恢复

时间: 2024-12-13 20:21:57

TCP的阻塞和重传的相关文章

TCP非阻塞accept和非阻塞connect

http://blog.chinaunix.net/uid-20751538-id-238260.html 非阻塞accept 当一个已完成的连接准备好被accept的时候,select会把监听socket标记为可读.因此,如果用select等待外来的连接时,应该不需要 把监听socket设置为非阻塞模式,因为如果select告诉我们连接已经就绪,accept就不应该被阻塞.不过这样做的时候有一个BUG:当客户端 在跟服务器建立连接之后发送了一个RST包,这个时候accept就会阻塞,直到有下一

13.TCP的超时与重传

TCP提供可靠的运输层.它使用的方法之一就是确认从另一端收到的数据.但数据和确认都有可能会丢失.TCP通过在发送时设置一个定时器来解决这种问题.如果当定时器溢出时还没有收到确认,它就重传该数据. 对于实现而言,关键之处就在于超时和重传的策略,即怎样决定超时间隔和如何确定重传频率. TCP管理4种不同的定时器: 重传定时器:当希望收到另一端的确认时使用. 坚持定时器:使窗口信息保持不断流动,即使另一端关闭了其接收窗口. 保活定时器:检测一个空闲连接的另一端何时崩溃或重启. 2MSL定时器:测量一个

TCP/IP协议详解 卷一:协议 21章、TCP的超时与重传

1.引言 TCP提供可靠的运输层.它使用的方法之一就是确认从另一端接收到的数据.但数据和确认都可能会丢失.TCP通过在发送时设置一个定时器来解决这种问题.如果当定时器溢出时还没有收到确认,它就重传该数据. 对于实现而言,关键之处就在于超时和重传的策略,即怎样决定超时间隔和如何确定重传频率. TCP管理4种不同的定时器: 重传定时器:当希望收到另一端的确认时使用. 坚持定时器:使窗口大小信息保持不断流动,即使另一端关闭了其接收窗口. 保活定时器:可以检测一个空闲连接的另一端何时崩溃或重启. 2MS

【TCP】超时与重传

在TCP连接中假设发送方一开始便向网络发送多个报文段,直到达到接收方通告的窗口大小为止.当发送方和接收方处于同一个区域网段时,这种方式是可以的.但是如果发送方和接收方之间存在多个路由器和速率较慢的链路时,就有可能出现问题. 一些中间路由器必须缓存分组,并有可能耗尽存储器空间. 现在,TCP需要支持被称为“慢启动”的算法.该算法通过观察到新分组进入网络的速率应该与另一端返回确认的速率相同而进行工作. 慢启动发送方的TCP增加了另一个窗口:拥塞窗口(congestion window),记做cwnd

《TCP/IP具体解释》读书笔记(21章)-TCP的超时与重传

TCP提供可靠的运输层. 它使用的方法之中的一个就是确认从还有一端收到的数据.但数据和确认都有可能会丢失.TCP通过在发送时设置一个定时器来解决这样的问题.假设当定时器溢出时还没有收到确认,它就重传该数据. 对于实现而言,关键之处就在于超时和重传的策略,即怎样决定超时间隔和怎样确定重传频率. TCP管理4种不同的定时器: 重传定时器:当希望收到还有一端的确认时使用. 坚持定时器:使窗体信息保持不断流动,即使还有一端关闭了其接收窗体. 保活定时器:检測一个空暇连接的还有一端何时崩溃或重新启动. 2

TCP/IP详解学习笔记--TCP的超时与重传

1.基本概念 TCP之所以可以安全的将数据在传输中的安全性,是因为它每次给对方发送数据,都会等待对方给个确认,当长时间收不到这个确认,发送端就会重发这个数据. 2.超时时间的测量 要测超时时间,TCP必须要发送一个特别序号的字节和接收包含该字节的确认之间的RTT,但是,确认本身就是有延时的,所以一般有一种简单的测量超时时间的公式 RTO = RB 其中R为随RTT变化而变化的平滑因子 3.拥塞避免算法 前边的博客有写道,当发送端使用慢启动算法时,由于其发送的数据段呈指数增长,因此也很容易达到网络

《TCP/IP详解》读书笔记(21章)-TCP的超时与重传

TCP提供可靠的运输层.它使用的方法之一就是确认从另一端收到的数据.但数据和确认都有可能会丢失.TCP通过在发送时设置一个定时器来解决这种问题.如果当定时器溢出时还没有收到确认,它就重传该数据. 对于实现而言,关键之处就在于超时和重传的策略,即怎样决定超时间隔和如何确定重传的频率. TCP管理4种不同的定时器: 重传定时器:当希望收到另一端的确认时使用. 坚持定时器:使窗口信息保持不断流动,即使另一端关闭了其接收窗口. 保活定时器:检测一个空闲连接的另一端何时崩溃或重启. 2MSL定时器:测量一

TCP/IP详解 卷1 第二十一章 TCP的超时与重传

21.1 引言 可靠性的保证之一就是超时重传 前面两个超时重传的例子 1)  ICMP端口不能到达时,TFTP客户使用UDP实现了一个简单的超时和重传机制,假定5s是一个适当是时间间隔,并每隔5s进行重传 2)  在向一个不存在的主机发送ARP的 例子中,可看到当TCP试图建立连接的时候,在每个重传之间使用一个较长的时延来重传SYN 对于每个连接,TCP管理4个不同的定时器: 1)  重传定时器使用于当希望收到另一端的确认 2)  坚持(persist)定时器使窗口大小信息保持不断流动,即使另一

TCP协议的确认重传机制

TCP协议是面向连接的传输层协议,TCP的传输特点具有可靠性,它具有面向连接服务来确保可靠稳定传输,而确认重传机制是TCP协议保证可靠稳定传输最重要的机制,他包括累计确认.超时时间计算.快速重传等几个方面. 确认重传机制 在发送一个数据之后,就开启一个定时器,若是在这个时间内没有收到发送数据的ACK确认报文,则对该报文进行重传,在达到一定次数还没有成功时放弃并发送一个复位信号. 1.累计确认 累计确认就是TCP协议的确认方法,TCP使用可变长度报文段来发送数据,重传时,报文段数据可能会比原报文段