理解机器为什么可以学习(四)

前面一节我们通过引入增长函数的上限的上限,一个多项式,来把Ein 和 Eout 的差Bound住,这一节引入VC Bound进一步说明这个问题。

前边我们得到,如果一个hypethesis集是有break point的,那么最终mh会被一个多项式bound住,如果break point 为k的话,那么这个多项式为N^(k - 1)。

Bound的不等式这里系统的列一下就是:

也就是说,机器可以学习的即可条件:

要有好的假设集,也就是需要存在break point

训练数据集要足够的大

要有一点儿好运气,选到了一个小的Ein。

好了,接下来正式介绍VC Dimension

1. VC Dimension

VC Dimension是能够shatter的最大的N,也就是最小的break point - 1

那么,之前讨论过break point的几种hypethesis对应的VC Dimension就对应为:

2. VC Dimension 应用到perception learning

好了,有了VC Dimension,那么我们就可以从VC Dimension的角度来来看看我们之前的PLA,可以分为两条主线:

那么,接下来扩展到具有超过两个特征的PLA。

那么,猜想perception的VC Dimension是不是就是 d + 1 呢?实际上就是的,怎么证明呢?当然就是从dvc >= d + 1 和 dvc <= d + 1 两个方面来证明。

一方面,欲证 dvc >= d + 1,只需要找到某个训练集大小为d + 1,可以内shatter即可:

假设这些输入数据为:

其中第一列为加进去的常数项,可以X是一个可逆矩阵

得证。

另一方面,欲证dvc <= d +1,就需要证明对所有的大小为d + 2的数据都不能shatter

特别地,对于 2 perception,输入数据如下边所示,可以得到x4 = x1 + x2 - x3,那么两边同时乘以wt可知:

最后如果y4是负就不可以得到,也就是不能够shatter。

一般化,

X列为n + 1,行为d + 2,所以第d + 2一定可以被前边的d + 1行线性表示。

两边同乘w,然后右边取值与线性系数一样,这样导致右边都为正,

所以y(d + 2)为负不能够取得,也就是对所有的大小的d + 2的都不能shatter。

3. Degree of Freedom

dvc 约等于 free parameters

所以VC Bound透露的信息:

上图就更好的说明了 VC Dimension 在某种程度上代表了模型复杂度。

上图举例列举了我们需要达到某个指标时候的数据,首先理论上这些数据似乎是非常大的,

但由于我们在推导VC Bound的时候,多次进行了上界扩张,所以实际上并不需要这么大,只需要十倍的dvc就可以了。

至此,通过理解机器为什么可以学习系列文章讲清楚了这个问题。

时间: 2024-12-29 11:15:55

理解机器为什么可以学习(四)的相关文章

理解机器为什么可以学习(二)

前边由Hoeffding出发讨论了为什么机器可以学习,主要就是在N很大的时候Ein PAC Eout,选择较小的Ein,这样的Eout也较小,但是当时还有一个问题没有解决,就是当时的假设的h的集合是个数是有限的,那么本文继续讨论h个数为无限的情况.http://www.cnblogs.com/futurehau/p/6235348.html 其实之前的问题可以分类两个方面: 一方面:Ein 是否约等于 Eout 另一方面:Ein时候足够小. 所以,选择合适的M是很重要的,现在加入M为无限大的情况

4 理解机器为什么可以学习

1 Hoeffding不等式 假设有一个罐子装满了橙色和绿色的球,为了估计罐子中橙色和绿色的比例,我们随机抓一把球,称为样本: 其中,设罐子中橙色球的比例为μ,样本中橙色球比例为v,样本的大小为N,我们对真实分布μ和样本分布v的差异容忍度为ε,则有下面的不等式成立: 也就是存在一个概率上界,只要我们保证样本容量N很大,就能使得"μ和v的差异大"这件事的概率是很小的. 2 对于一个假设函数h的情况 如果我们的假设函数h已经确定了,那么我们可以这样把我们的问题对应到罐子模型:每个球表示一个

理解机器为什么可以学习(三)

前边讨论了我们期望成长函数m能够取代了M,现在继续讨论m是否成长很慢,是否能够取代M. 成长函数就是二分类的排列组合的数量.break point是第一个不能shatter(覆盖所有情形)的点. 1.break point对成长函数的限制 我们希望 这里引入上限函数 bound function:给了break point,看看可以组成多少排列组合,下面证明boundfunction是多项式成长的. 右上角相当于没有加条件限制,对角线就是全部的减1嘛,因为全部不可能,小一点,找个上限. 接下来填

Linux系统理解以及Linux系统学习心得

原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 作者:严哲璟 说一下我对Linux系统的理解 1.加载Linux内核准备:在加载基本输入输出模块(BIOS)之后,从磁盘的引导扇区读入操作系统的代码文件块到内存中,之后开始整个系统的初始化. 2.main.c的start_kernel函数是整个操作系统的入口,这也与Linux是基于C语言的特性相符,start_kernel具体做的动作很多

机器学习基石笔记9——机器可以怎样学习(1)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

SpringMVC学习(四)——Spring、MyBatis和SpringMVC的整合

之前我整合了Spring和MyBatis这两个框架,不会的可以看我的文章MyBatis框架的学习(六)——MyBatis整合Spring.本文我再来讲SpringMVC和MyBatis整合开发的方法,这样的话,Spring.MyBatis和SpringMVC三大框架的整合开发我们就学会了.这里我使用的Spring是Spring4.1.3这个版本(SpringMVC自然也是这个版本),MyBatis是MyBatis3.2.7这个版本. 为了更好的学习SpringMVC和MyBatis整合开发的方法

Jetty学习四:部署到Jetty

Web应用的框架 标准Jetty发布版本能部署标准servlet Spec Web应用和Jetty内部ContextHandler部署描述符,或者两者的一个混合. Web应用是可部署的动态(servlets.filters.jsps.等等)和静态内容.支持库.和绑定到特定上下文路径的描写性的元数据的集合. 格式和布局最终都是通过Servlet Spec定义,你可以查阅官方Servlet Spec文档获取关于Web应用布局和结构的更多细节,这里将给出一个基本的轮廓. Web应用能被捆绑到一个单个的

机器学习基石笔记10——机器可以怎样学习(2)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

Android Camera fw学习(四)-recording流程分析

Android Camera fw学习(四)-recording流程分析 备注:备注:本文是Android5.1学习笔记.博文按照软件启动流程分析.  且行且惜,一步一个脚印,这次学习camera Video.虽然标题是recording流程分析,但这里很多和preview是相似的(包含更新,创建Stream,创建Request),这里主要分析MediaRecorder对象创建.video帧监听对象注册.帧可用事件以及一系列callback流程分析. 一.认识video(mediaRecorde