深入浅出 Java Concurrency (27): 并发容器 part 12 线程安全的List/Set[转]

本小节是《并发容器》的最后一部分,这一个小节描述的是针对List/Set接口的一个线程版本。

在《并发队列与Queue简介》中介绍了并发容器的一个概括,主要描述的是Queue的实现。其中特别提到一点LinkedList是List/Queue的实现,但是LinkedList确实非线程安全的。不管BlockingQueue还是ConcurrentMap的实现,我们发现都是针对链表的实现,当然尽可能的使用CAS或者Lock的特性,同时都有通过锁部分容器来提供并发的特性。而对于List或者Set而言,增、删操作其实都是针对整个容器,因此每次操作都不可避免的需要锁定整个容器空间,性能肯定会大打折扣。要实现一个线程安全的List/Set,只需要在修改操作的时候进行同步即可,比如使用java.util.Collections.synchronizedList(List<T>)或者java.util.Collections.synchronizedSet(Set<T>)。当然也可以使用Lock来实现线程安全的List/Set。

通常情况下我们的高并发都发生在“多读少写”的情况,因此如果能够实现一种更优秀的算法这对生产环境还是很有好处的。ReadWriteLock当然是一种实现。CopyOnWriteArrayList/CopyOnWriteArraySet确实另外一种思路。

CopyOnWriteArrayList/CopyOnWriteArraySet的基本思想是一旦对容器有修改,那么就“复制”一份新的集合,在新的集合上修改,然后将新集合复制给旧的引用。当然了这部分少不了要加锁。显然对于CopyOnWriteArrayList/CopyOnWriteArraySet来说最大的好处就是“读”操作不需要锁了。

我们来看看源码。

/** The array, accessed only via getArray/setArray. */
private volatile transient Object[] array;
public E get(int index) {
    return (E)(getArray()[index]);
}
private static int indexOf(Object o, Object[] elements,
                           int index, int fence) {
    if (o == null) {
        for (int i = index; i < fence; i++)
            if (elements[i] == null)
                return i;
    } else {
        for (int i = index; i < fence; i++)
            if (o.equals(elements[i]))
                return i;
    }
    return -1;
}
public Iterator<E> iterator() {
    return new COWIterator<E>(getArray(), 0);
}
    public void clear() {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        setArray(new Object[0]);
    } finally {
        lock.unlock();
    }
    }

对于上述代码,有几点说明:

  1. List仍然是基于数组的实现,因为只有数组是最快的。
  2. 为了保证无锁的读操作能够看到写操作的变化,因此数组array是volatile类型的。
  3. get/indexOf/iterator等操作都是无锁的,同时也可以看到所操作的都是某一时刻array的镜像(这得益于数组是不可变化的)
  4. add/set/remove/clear等元素变化的都是需要加锁的,这里使用的是ReentrantLock。

这里有一段有意思的代码片段。

public E set(int index, E element) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        Object[] elements = getArray();
        Object oldValue = elements[index];
        if (oldValue != element) {
        int len = elements.length;
        Object[] newElements = Arrays.copyOf(elements, len);
        newElements[index] = element;
        setArray(newElements);
        } else {
        // Not quite a no-op; ensures volatile write semantics
        setArray(elements);
        }
        return (E)oldValue;
    } finally {
        lock.unlock();
    }
    }

final void setArray(Object[] a) {
    array = a;
}

对于set操作,如果元素有变化,修改后setArray(newElements);将新数组赋值还好理解。那么如果一个元素没有变化,也就是上述代码的else部分,为什么还需要进行一个无谓的setArray操作?毕竟setArray操作没有改变任何数据。

对于这个问题也是很有意思,有一封邮件讨论了此问题(123)。
大致的意思是,尽管没有改变任何数据,但是为了保持“volatile”的语义,任何一个读操作都应该是一个写操作的结果,也就是读操作看到的数据一定是某个写操作的结果(尽管写操作没有改变数据本身)。所以这里即使不设置也没有问题,仅仅是为了一个语义上的补充(个人理解)。

这里还有一个有意思的讨论,说什么addIfAbsent在元素没有变化的时候为什么没有setArray操作?这个要看怎么理解addIfAbsent的语义了。如果说addIfAbsent语义是”写“或者”不写“操作,而把”不写“操作当作一次”读“操作的话,那么”读“操作就不需要保持volatile语义了。

对于CopyOnWriteArraySet而言就简单多了,只是持有一个CopyOnWriteArrayList,仅仅在add/addAll的时候检测元素是否存在,如果存在就不加入集合中。

private final CopyOnWriteArrayList<E> al;
/**
* Creates an empty set.
*/
public CopyOnWriteArraySet() {
    al = new CopyOnWriteArrayList<E>();
}

public boolean add(E e) {
    return al.addIfAbsent(e);
}

在使用上CopyOnWriteArrayList/CopyOnWriteArraySet就简单多了,和List/Set基本相同,这里就不再介绍了。

整个并发容器结束了,接下来好好规划下线程池部分,然后进入最后一部分的梳理。

时间: 2024-10-23 17:42:14

深入浅出 Java Concurrency (27): 并发容器 part 12 线程安全的List/Set[转]的相关文章

深入浅出 Java Concurrency (17): 并发容器 part 2 ConcurrentMap (2)

本来想比较全面和深入的谈谈ConcurrentHashMap的,发现网上有很多对HashMap和ConcurrentHashMap分析的文章,因此本小节尽可能的分析其中的细节,少一点理论的东西,多谈谈内部设计的原理和思想. 要谈ConcurrentHashMap的构造,就不得不谈HashMap的构造,因此先从HashMap开始简单介绍. HashMap原理 我们从头开始设想.要将对象存放在一起,如何设计这个容器.目前只有两条路可以走,一种是采用分格技术,每一个对象存放于一个格子中,这样通过对格子

深入浅出 Java Concurrency (21): 并发容器 part 6 可阻塞的BlockingQueue (1)[转]

在<并发容器 part 4 并发队列与Queue简介>节中的类图中可以看到,对于Queue来说,BlockingQueue是主要的线程安全版本.这是一个可阻塞的版本,也就是允许添加/删除元素被阻塞,直到成功为止. BlockingQueue相对于Queue而言增加了两个操作:put/take.下面是一张整理的表格. 看似简单的API,非常有用.这在控制队列的并发上非常有好处.既然加入队列和移除队列能够被阻塞,这在实现生产者-消费者模型上就简单多了. 清单1 是生产者-消费者模型的一个例子.这个

深入浅出 Java Concurrency (16): 并发容器 part 1 ConcurrentMap (1)[转]

从这一节开始正式进入并发容器的部分,来看看JDK 6带来了哪些并发容器. 在JDK 1.4以下只有Vector和Hashtable是线程安全的集合(也称并发容器,Collections.synchronized*系列也可以看作是线程安全的实现).从JDK 5开始增加了线程安全的Map接口ConcurrentMap和线程安全的队列BlockingQueue(尽管Queue也是同时期引入的新的集合,但是规范并没有规定一定是线程安全的,事实上一些实现也不是线程安全的,比如PriorityQueue.A

深入浅出 Java Concurrency (17): 并发容器 part 2 ConcurrentMap (2)[转]

本来想比较全面和深入的谈谈ConcurrentHashMap的,发现网上有很多对HashMap和ConcurrentHashMap分析的文章,因此本小节尽可能的分析其中的细节,少一点理论的东西,多谈谈内部设计的原理和思想. 要谈ConcurrentHashMap的构造,就不得不谈HashMap的构造,因此先从HashMap开始简单介绍. HashMap原理 我们从头开始设想.要将对象存放在一起,如何设计这个容器.目前只有两条路可以走,一种是采用分格技术,每一个对象存放于一个格子中,这样通过对格子

深入浅出 Java Concurrency (25): 并发容器 part 10 双向并发阻塞队列 BlockingDeque[转]

这个小节介绍Queue的最后一个工具,也是最强大的一个工具.从名称上就可以看到此工具的特点:双向并发阻塞队列.所谓双向是指可以从队列的头和尾同时操作,并发只是线程安全的实现,阻塞允许在入队出队不满足条件时挂起线程,这里说的队列是指支持FIFO/FILO实现的链表. 首先看下LinkedBlockingDeque的数据结构.通常情况下从数据结构上就能看出这种实现的优缺点,这样就知道如何更好的使用工具了. 从数据结构和功能需求上可以得到以下结论: 要想支持阻塞功能,队列的容量一定是固定的,否则无法在

深入浅出 Java Concurrency (23): 并发容器 part 8 可阻塞的BlockingQueue (3)[转]

在Set中有一个排序的集合SortedSet,用来保存按照自然顺序排列的对象.Queue中同样引入了一个支持排序的FIFO模型. 并发队列与Queue简介 中介绍了,PriorityQueue和PriorityBlockingQueue就是支持排序的Queue.显然一个支持阻塞的排序Queue要比一个非线程安全的Queue实现起来要复杂的多,因此下面只介绍PriorityBlockingQueue,至于PriorityQueue只需要去掉Blocking功能就基本相同了. 排序的Blocking

深入浅出 Java Concurrency (18): 并发容器 part 3 ConcurrentMap (3)[转]

在上一篇中介绍了HashMap的原理,这一节是ConcurrentMap的最后一节,所以会完整的介绍ConcurrentHashMap的实现. ConcurrentHashMap原理 在读写锁章节部分介绍过一种是用读写锁实现Map的方法.此种方法看起来可以实现Map响应的功能,而且吞吐量也应该不错.但是通过前面对读写锁原理的分析后知道,读写锁的适合场景是读操作>>写操作,也就是读操作应该占据大部分操作,另外读写锁存在一个很严重的问题是读写操作不能同时发生.要想解决读写同时进行问题(至少不同元素

深入浅出 Java Concurrency (26): 并发容器 part 11 Exchanger[转]

可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给 exchange 方法,与伙伴线程进行匹配,并且在返回时接收其伙伴的对象.Exchanger 可能被视为 SynchronousQueue 的双向形式. 换句话说Exchanger提供的是一个交换服务,允许原子性的交换两个(多个)对象,但同时只有一对才会成功.先看一个简单的实例模型. 在上面的模型中,我们假定一个空的栈(Stack),栈顶(Top)当然是没有元素的.同时我们假定一个数据结构Node,包含一个要交换的元

深入浅出 Java Concurrency (20): 并发容器 part 5 ConcurrentLinkedQueue[转]

ConcurrentLinkedQueue是Queue的一个线程安全实现.先来看一段文档说明. 一个基于链接节点的无界线程安全队列.此队列按照 FIFO(先进先出)原则对元素进行排序.队列的头部 是队列中时间最长的元素.队列的尾部 是队列中时间最短的元素.新的元素插入到队列的尾部,队列获取操作从队列头部获得元素.当多个线程共享访问一个公共 collection 时,ConcurrentLinkedQueue 是一个恰当的选择.此队列不允许使用 null 元素. 由于ConcurrentLinke