InfluxDB学习之InfluxDB常用函数(三)变换类函数

1)DERIVATIVE()函数

作用:返回一个字段在一个series中的变化率。

InfluxDB会计算按照时间进行排序的字段值之间的差异,并将这些结果转化为单位变化率。其中,单位可以指定,默认为1s。

语法:

SELECT DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

其中,unit取值可以为以下几种:

u --microsecondss --secondsm --minutesh --hoursd --daysw --weeks

DERIVATIVE()函数还可以在GROUP BY time()的条件下与聚合函数嵌套使用,格式如下:

SELECT DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

示例:

假设location = santa_monica 条件下数据有以下几条:

name: h2o_feet--------------time                           water_level2015-08-18T00:00:00Z     2.0642015-08-18T00:06:00Z     2.1162015-08-18T00:12:00Z     2.0282015-08-18T00:18:00Z     2.1262015-08-18T00:24:00Z     2.0412015-08-18T00:30:00Z     2.051

计算每一秒的变化率:

> SELECT DERIVATIVE(water_level) FROM h2o_feet WHERE location = ‘santa_monica‘ LIMIT 5name: h2o_feet--------------time                           derivative2015-08-18T00:06:00Z     0.000144444444444444572015-08-18T00:12:00Z     -0.000244444444444444652015-08-18T00:18:00Z     0.00027222222222222182015-08-18T00:24:00Z     -0.0002361111111111112015-08-18T00:30:00Z     2.777777777777842e-05

第一行数据的计算公式为(2.116 - 2.064) / (360s / 1s)

计算每六分钟的变化率

> SELECT DERIVATIVE(water_level,6m) FROM h2o_feet WHERE location = ‘santa_monica‘ LIMIT 5name: h2o_feet--------------time                           derivative2015-08-18T00:06:00Z     0.0520000000000000462015-08-18T00:12:00Z     -0.088000000000000082015-08-18T00:18:00Z     0.097999999999999862015-08-18T00:24:00Z     -0.084999999999999962015-08-18T00:30:00Z     0.010000000000000231

第一行数据的计算过程如下:(2.116 - 2.064) / (6m / 6m)

计算每12分钟的变化率:

> SELECT DERIVATIVE(water_level,12m) FROM h2o_feet WHERE location = ‘santa_monica‘ LIMIT 5name: h2o_feet--------------time                           derivative2015-08-18T00:06:00Z     0.104000000000000092015-08-18T00:12:00Z     -0.176000000000000162015-08-18T00:18:00Z     0.195999999999999732015-08-18T00:24:00Z     -0.169999999999999932015-08-18T00:30:00Z     0.020000000000000462

第一行数据计算过程为:(2.116 - 2.064 / (6m / 12m)

计算每12分钟最大值的变化率

> SELECT DERIVATIVE(MAX(water_level)) FROM h2o_feet WHERE location = ‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ AND time < ‘2015-08-18T00:36:00Z‘ GROUP BY time(12m)
name: h2o_feet--------------time                           derivative2015-08-18T00:12:00Z     0.0099999999999997872015-08-18T00:24:00Z     -0.07499999999999973

这个函数功能非常多,也非常复杂,更多对于此功能的详细解释请看官网:https://docs.influxdata.com/influxdb/v0.13/query_language/functions/#derivative

2)DIFFERENCE()函数

作用:返回一个字段中连续的时间值之间的差异。字段类型必须是长整型或float64。

最基本的语法:

SELECT DIFFERENCE(<field_key>) FROM <measurement_name> [WHERE <stuff>]

与GROUP BY time()以及其他嵌套函数一起使用的语法格式:

SELECT DIFFERENCE(<function>(<field_key>)) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

其中,函数可以包含以下几个:

COUNT(), MEAN(), MEDIAN(),SUM(), FIRST(), LAST(), MIN(), MAX(), 和 PERCENTILE()。

使用示例

例子中使用的源数据如下所示:

> SELECT water_level FROM h2o_feet WHERE location=‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:36:00Z‘name: h2o_feet--------------time                            water_level2015-08-18T00:00:00Z      2.0642015-08-18T00:06:00Z      2.1162015-08-18T00:12:00Z      2.0282015-08-18T00:18:00Z      2.1262015-08-18T00:24:00Z      2.0412015-08-18T00:30:00Z      2.0512015-08-18T00:36:00Z      2.067

计算water_level间的差异:

> SELECT DIFFERENCE(water_level) FROM h2o_feet WHERE location=‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:36:00Z‘name: h2o_feet--------------time                            difference2015-08-18T00:06:00Z      0.0520000000000000462015-08-18T00:12:00Z      -0.088000000000000082015-08-18T00:18:00Z      0.097999999999999862015-08-18T00:24:00Z      -0.084999999999999962015-08-18T00:30:00Z      0.0100000000000002312015-08-18T00:36:00Z      0.016000000000000014

数据类型都为float类型。

3)ELAPSED()函数

作用:返回一个字段在连续的时间间隔间的差异,间隔单位可选,默认为1纳秒。

语法:

SELECT ELAPSED(<field_key>, <unit>) FROM <measurement_name> [WHERE <stuff>]

示例:

计算h2o_feet字段在纳秒间隔下的差异。

> SELECT ELAPSED(water_level) FROM h2o_feet WHERE location = ‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:24:00Z‘name: h2o_feet--------------time                            elapsed2015-08-18T00:06:00Z      3600000000002015-08-18T00:12:00Z      3600000000002015-08-18T00:18:00Z      3600000000002015-08-18T00:24:00Z      360000000000

在一分钟间隔下的差异率:

> SELECT ELAPSED(water_level,1m) FROM h2o_feet WHERE location = ‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:24:00Z‘name: h2o_feet--------------time                            elapsed2015-08-18T00:06:00Z      62015-08-18T00:12:00Z      62015-08-18T00:18:00Z      62015-08-18T00:24:00Z      6

注意:如果设置的时间间隔比字段数据间的时间间隔更大时,则函数会返回0,如下所示:

> SELECT ELAPSED(water_level,1h) FROM h2o_feet WHERE location = ‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:24:00Z‘name: h2o_feet--------------time                            elapsed2015-08-18T00:06:00Z      02015-08-18T00:12:00Z      02015-08-18T00:18:00Z      02015-08-18T00:24:00Z      0

4)MOVING_AVERAGE()函数

作用:返回一个连续字段值的移动平均值,字段类型必须是长整形或者float64类型。

语法:

基本语法

SELECT MOVING_AVERAGE(<field_key>,<window>) FROM <measurement_name> [WHERE <stuff>]

与其他函数和GROUP BY time()语句一起使用时的语法

SELECT MOVING_AVERAGE(<function>(<field_key>),<window>) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

此函数可以和以下函数一起使用:

COUNT(), MEAN(),MEDIAN(), SUM(), FIRST(), LAST(), MIN(), MAX(), and PERCENTILE().

示例:

> SELECT water_level FROM h2o_feet WHERE location = ‘santa_monica‘ AND time >= ‘2015-08-18T00:00:00Z‘ and time <= ‘2015-08-18T00:36:00Z‘name: h2o_feet--------------time                            water_level2015-08-18T00:00:00Z      2.0642015-08-18T00:06:00Z      2.1162015-08-18T00:12:00Z      2.0282015-08-18T00:18:00Z      2.1262015-08-18T00:24:00Z      2.0412015-08-18T00:30:00Z      2.0512015-08-18T00:36:00Z      2.067

5)NON_NEGATIVE_DERIVATIVE()函数

作用:返回在一个series中的一个字段中值的变化的非负速率。

语法:

SELECT NON_NEGATIVE_DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

与聚合类函数放在一起使用时的语法如下所示:

SELECT NON_NEGATIVE_DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

此函数示例请参阅:DERIVATIVE()函数

6)STDDEV()函数

作用:返回一个字段中的值的标准偏差。值的类型必须是长整型或float64类型。

语法:

SELECT STDDEV(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

示例:

> SELECT STDDEV(water_level) FROM h2o_feet
name: h2o_feet--------------time                           stddev1970-01-01T00:00:00Z     2.279144584196145

示例2:

> SELECT STDDEV(water_level) FROM h2o_feet WHERE time >= ‘2015-08-18T00:00:00Z‘ and time < ‘2015-09-18T12:06:00Z‘ GROUP BY time(1w), location
name: h2o_feet
tags: location = coyote_creek
time                           stddev----                           ------2015-08-13T00:00:00Z     2.24372630801939852015-08-20T00:00:00Z     2.1212761501447192015-08-27T00:00:00Z     3.04161221707862152015-09-03T00:00:00Z     2.53480650254352072015-09-10T00:00:00Z     2.5840039548826732015-09-17T00:00:00Z     2.2587514836274414name: h2o_feet
tags: location = santa_monica
time                           stddev----                           ------2015-08-13T00:00:00Z     1.111563445875532015-08-20T00:00:00Z     1.09098492790823662015-08-27T00:00:00Z     1.98701161800969622015-09-03T00:00:00Z     1.35167784509020672015-09-10T00:00:00Z     1.49605738115005882015-09-17T00:00:00Z     1.075701669442093
时间: 2024-12-14 07:09:09

InfluxDB学习之InfluxDB常用函数(三)变换类函数的相关文章

InfluxDB学习之InfluxDB的HTTP API写入操作

HTTP API也有两种操作:写入和查询,本文就先给大家介绍一下 InfluxDB的HTTP API的写入操作方式. 在InfluxDB学习的上一篇文章:InfluxDB学习之InfluxDB的基本操作 中,我们提到 InfluxDB操作有三种方式,其中一种是HTTP API的方式. HTTP API也有两种操作:写入和查询,本文就先给大家介绍一下 InfluxDB的HTTP API的写入操作方式.更多InfluxDB详细教程请看:InfluxDB系列学习教程目录 InfluxDB技术交流群:5

【转】JNI学习积累之一 ---- 常用函数大全

原文网址:http://blog.csdn.net/qinjuning/article/details/7595104 本文原创,转载请注明出处:http://blog.csdn.net/qinjuning 最近一段时间,在工作方面比较闲,分配的Bug不是很多,于是好好利用这段时间就着源代码看了些许模块, 主要方式 还是贼看贼看代码, 同时利用烧机的便利,加Log观看,基本上都能弄个脸熟 .心里想着该写点什么了?可是水平不够,再加上 包括很多真正实现地方--中间层,基本上没看.于是乎,也就不好卖

[转载]JNI学习积累之一 ---- 常用函数大全

本文转载于:http://blog.csdn.net/qinjuning 最近一段时间,在工作方面比较闲,分配的Bug不是很多,于是好好利用这段时间就着源代码看了些许模块, 主要方式 还是贼看贼看代码, 同时利用烧机的便利,加Log观看,基本上都能弄个脸熟 .心里想着该写点什么了?可是水平不够,再加上 包括很多真正实现地方--中间层,基本上没看.于是乎,也就不好卖弄了. 花了几天时间研究了下JNI,基本上知道如何使用了.照我的观点JNI还是不难的,难得只是我们一份尝试的心. 学习过程中, 发现关

InfluxDB学习之InfluxDB常用函数(一)聚合类函数

1)count()函数 返回一个(field)字段中的非空值的数量. 语法: SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>] 示例: >SELECT COUNT(water_level) FROM h2o_feet name: h2o_feet--------------time                           

InfluxDB学习之InfluxDB常用函数(二)选择类函数

1)BOTTOM()函数 作用:返回一个字段中最小的N个值.字段类型必须是长整型或float64类型. 语法: SELECT BOTTOM(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>] 使用示例 > SELECT BOTTOM(water_level,3) FR

InfluxDB学习之InfluxDB的安装和简介

最近用到了 InfluxDB,在此记录下学习过程,同时也希望能够帮助到其他学习的同学. 本文主要介绍InfluxDB的功能特点以及influxDB的安装过程.更多InfluxDB详细教程请看:InfluxDB系列学习教程目录 一.InfluxDB 简介 InfluxDB 是用Go语言编写的一个开源分布式时序.事件和指标数据库,无需外部依赖. 类似的数据库有Elasticsearch.Graphite等. 其主要特色功能 1)基于时间序列,支持与时间有关的相关函数(如最大,最小,求和等) 2)可度

InfluxDB学习之InfluxDB数据保留策略(Retention Policies)

InfluxDB每秒可以处理成千上万条数据,要将这些数据全部保存下来会占用大量的存储空间,有时我们可能并不需要将所有历史数据进行存储,因此,InfluxDB推出了数据保留策略(Retention Policies),用来让我们自定义数据的保留时间.更多InfluxDB详细教程请看:InfluxDB系列学习教程目录 InfluxDB技术交流群:580487672(点击加入) 一.InfluxDB 数据保留策略 说明 InfluxDB的数据保留策略(RP) 用来定义数据在InfluxDB中存放的时间

InfluxDB学习之InfluxDB的基本操作

InfluxDB 是一个开源分布式时序.事件和指标数据库. 使用 Go 语言编写,无需外部依赖.其设计目标是实现分布式和水平伸缩扩展. 它有三大特性: 1. Time Series (时间序列):你可以使用与时间有关的相关函数(如最大,最小,求和等) 2. Metrics(度量):你可以实时对大量数据进行计算 3. Eevents(事件):它支持任意的事件数据 特点 schemaless(无结构),可以是任意数量的列 Scalable min, max, sum, count, mean, me

SQL学习之使用常用函数处理数据

一.在介绍使用函数处理数据前,先说下使用DBMS(数据库管理系统)处理数据所带来的问题! 1.与几乎所有的DBMS都同等的支持SQL语句(如SELECT)不同,每一个DBMS都有特定的函数,事实上,只有少数几个函数被所有主要的DBMS等同的支持. 比如,像提取字符串的组成部分,ACESS使用MID();DB2.Oracle.Postgre和SQLite使用SUBSTR(),而MySQL和SQL SERVER使用SUBSTRING(); 比如,数据类型的转换,Access和Oracle使用多个函数