Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network



1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.





  

  

时间: 2024-10-20 21:56:17

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的相关文章

论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C

Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks

一.主要思想 CNN在计算机视觉领域取得了非常优异的成绩,但是训练CNN的模型需要大量的数据,小数据集上面无法体现出出CNN的优势.针对这个问题作者提出了通过Transferring CNN weights来解决这个问题.首先在imagenet等大数据集上面训练传统的CNN模型,然后在针对特定的任务就行fine-tuning(可能不准确),但是和以往fine-tuning不同的是:改变了整个pre-training的CNN的框架,在VOC2007和VOC2012上面取得了很好的结果. 二.基本框

课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the dimensionality reduction of a volume in a very deep network Understand and Implement a Residual network Build a deep neural network using Keras Implem

【论文笔记】Learning Convolutional Neural Networks for Graphs

Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings/papers/v48/niepert16.pdf 上图展示了传统 CNN 在 image 上进行卷积操作的工作流程.(a)就是通过滑动窗口的形式,利用3*3 的卷积核在 image 上进行滑动,来感知以某一个像素点为中心

Convolutional Neural Networks from deep learning (assignment 1 from week 1)

Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welcome There are still something confuse me! working how to paste the jupyter here.................................................... Convolutional Neur

Learning Convolutional Neural Networks for Graphs(网友分析)

paper Learning Convolutional Neural Networks for Graphs论文导读及代码链接(比较细,全面) [论文笔记]Learning Convolutional Neural Networks for Graphs(与上面这篇互为补充) Learning Convolutional Neural Networks for Graphs(上面2个的进一步补充) 原文地址:https://www.cnblogs.com/hugh2006/p/12642135

[C6] Andrew Ng - Convolutional Neural Networks

About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica

(转)A Beginner's Guide To Understanding Convolutional Neural Networks

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but

A Beginner's Guide To Understanding Convolutional Neural Networks(转)

A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but these networks have been some of the most influential