标准化与归一化

标准化(Standardization)

是按某个维度进行标准化,例如有下面的矩阵

>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])

正态分布标准化后的结果就是

array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])

归一化(Normalization)

是按某个样本进行归一化,例如上面的X矩阵归一化后的结果就是

array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

每一行向量的长度为1

参考资料:http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

时间: 2024-10-07 11:45:44

标准化与归一化的相关文章

数据标准化(归一化)处理

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和 量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准 化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是两种常用的归一化方法: 一.min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间.转换函数如下: 其中max为样本数据的

mxnet-梯度,反馈与标准化(归一化)

1.attach_grad(grad_req='write',?stype=None) 附加一个梯度缓存在NDArray上,这样,回退(反馈)能计算相应的梯度 参数: grad_req?({'write',?'add',?'null'})'write': 梯度将在每次回退时覆盖.?'add': 梯度将在每次回退时增加到已有数据中.'null': 不计算梯度stype?(str,?optional) – 梯度存储类型,默认与NDArray相同?? 2.grad 返回附加在NDArray中的梯度 ?

参数的标准化和归一化

参数的标准化与归一化 注:中文资料中从英文文献中学习,提到normalization和standardization时候,往往将其翻译为"标准化"和"归一化".但是很坑的一点是,由于翻译软件也没有很好的区分两者,所以几乎所有人都将两者混为一谈,甚至A文章对于"标准化"和"归一化"翻译的对应和B文章是完全相反的.所以为了以后不发生鸡同鸭讲的问题,本文不再使用这两个词的中文翻译.其实这两个词往往都是用来表示特征缩放(Feature

Python数据标准化、归一化

在进行数据分析或者机器学习时,通常需要对数据进行预处理,其中主要的步骤就是数据标准化/归一化. 常用的数据标准化和归一化方法主要有: 1. 最大最小标准化 y=(x-min(x))/(max(x)-min(x)),x为一序列,即x={x1,x2,x3......},max(x)为最大值,min(x)为最小值 2. z-score标准化 y=(x-mean(x))/std(x),mean(x)指的是均值,std(x)指的是标准差,结果会形成均值为0,方差为1的序列 3. 直接归一化 y=x/sum

归一化和标准化的使用场景以及归一化和标准化有没有改变数据分布

具体讲解可以看这里: 特征工程中的「归一化」有什么作用? - 微调的回答 - 知乎 https://www.zhihu.com/question/20455227/answer/370658612 从这个答案我们知道,标准化和归一化在数据确定的条件下都是一种线性变化,线性变化有很优良的特征,比如数值排序不会改变. 我自己的理解是这样的,对于归一化,没有改变数据分布,对于标准化,做的事情就是使原来的分布改变为高斯分布,所有改变了数据分布 原文地址:https://www.cnblogs.com/l

数据归一化的两种常用方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是两种常用的归一化方法: 一.min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间.转换函数如下: 其中max为样本数据的最大

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是两种常用的归一化方法: 一.min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间.转换函数如下: 其中max为样本数据的最大

【转】数据归一化和两种常用的归一化方法

转自http://www.cnblogs.com/chaosimple/p/3227271.html 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是两种常用的归一化方法: 一.min-max标准化(Min-Max Normalization) 也称为离差标准化

[转] 数据归一化和两种常用的归一化方法

原文链接:http://www.cnblogs.com/chaosimple/p/3227271.html 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是两种常用的归一化方法: 一.min-max标准化(Min-Max Normalization) 也称为离差