电影功夫熊猫使用的单词分析

你英语四级过了吗?功夫熊猫看了吗?功夫熊猫使用了995个英语单词,你会说很简单吧,别急,我给你分析一下,这些单词中有236个单词不在四级词汇范围内,花两分钟时间看看你是否认识这些单词,单词后面跟的数字表示该单词在电影中出现的次数。

你也可以获取本文的分析程序,这样你就可以分析其他电影了。看一部电影之前,先通过这种方式分析一下,然后学习自己不认识的单词,然后再去看电影,如此这样坚持下去,英语水平就会有很大的提升。

words(995):

1. you 249
2. the 189
3. i 184
4. to 139
5. is 104
6. a 94
7. it 90
8. of 81
9. that 77
10. no 72
11. and 71
12. what 67
13. master 58
14. me 56
15. warrior 49
16. are 49
17. he 49
18. dragon 49
19. have 46
20. not 46
21. was 46
22. this 44
23. my 43
24. but 43
25. your 42
26. in 39
27. will 36
28. be 35
29. just 35
30. for 33
31. know 30
32. shifu 29
33. can 29
34. do 28
35. on 28
36. get 28
37. yeah 27
38. so 27
39. wait 26
40. him 26
41. we 26
42. panda 25
43. now 24
44. how 24
45. kung 23
46. at 23
47. come 23
48. tai 23
49. all 22
50. his 22
51. fu 22
52. lung 22
53. po 22
54. one 22
55. go 21
56. there 20
57. yes 20
58. okay 20
59. who 20
60. if 20
61. about 20
62. oogway 19
63. never 19
64. here 19
65. when 18
66. oh 18
67. right 17
68. like 17
69. stop 16
70. good 16
71. were 16
72. could 16
73. or 16
74. up 16
75. scroll 15
76. sorry 14
77. with 14
78. gonna 14
79. going 14
80. see 14
81. would 13
82. got 13
83. well 13
84. nothing 13
85. thought 13
86. way 13
87. time 13
88. am 13
89. as 13
90. did 13
91. back 13
92. look 13
93. secret 13
94. maybe 12
95. noodles 12
96. believe 12
97. out 12
98. has 11
99. been 11
100. little 11
101. make 11
102. something 11
103. work 11
104. said 11
105. think 10
106. dad 10
107. tell 10
108. our 10
109. should 10
110. tigress 9
111. quit 9
112. had 9
113. mean 9
114. finally 9
115. take 9
116. big 9
117. then 9
118. five 9
119. us 9
120. only 9
121. from 9
122. ready 9
123. want 8
124. mantis 8
125. destiny 8
126. why 8
127. peace 8
128. mind 8
129. dream 8
130. valley 8
131. doing 8
132. really 8
133. prison 7
134. let 7
135. must 7
136. where 7
137. ingredient 7
138. hey 7
139. more 7
140. monkey 7
141. before 7
142. done 7
143. by 7
144. very 7
145. than 7
146. becomes 7
147. coming 7
148. seen 7
149. actually 7
150. life 7
151. eat 7
152. because 6
153. fast 6
154. thank 6
155. guys 6
156. ever 6
157. future 6
158. try 6
159. lightning 6
160. thing 6
161. fat 6
162. day 6
163. say 6
164. bring 6
165. an 6
166. trying 6
167. battle 6
168. hold 6
169. trained 6
170. upset 6
171. noodle 6
172. may 6
173. son 6
174. level 6
175. fire 6
176. they 6
177. need 5
178. told 5
179. focus 5
180. even 5
181. crazy 5
182. too 5
183. thousand 5
184. accident 5
185. does 5
186. through 5
187. those 5
188. book 5
189. impossible 5
190. yet 5
191. stuck 5
192. great 5
193. wrong 5
194. history 5
195. inner 5
196. someone 5
197. bad 5
198. peach 5
199. mine 5
200. awesome 5
201. although 5
202. bit 5
203. thinking 5
204. soup 5
205. fighting 5
206. friend 5
207. old 5
208. them 5
209. into 5
210. frightening 5
211. crane 5
212. writing 5
213. cannot 5
214. first 5
215. proud 5
216. everybody 5
217. dreaming 4
218. making 4
219. trust 4
220. hard 4
221. china 4
222. years 4
223. loved 4
224. understand 4
225. defeat 4
226. read 4
227. everyone 4
228. until 4
229. legend 4
230. probably 4
231. stayed 4
232. things 4
233. worry 4
234. longer 4
235. news 4
236. double 4
237. meant 4
238. beat 4
239. tree 4
240. clear 4
241. also 4
242. enough 4
243. easy 4
244. dead 4
245. train 4
246. some 4
247. legendary 4
248. over 4
249. universe 4
250. else 4
251. knew 4
252. use 4
253. true 4
254. belong 4
255. ball 4
256. fight 4
257. control 4
258. morning 4
259. long 4
260. free 4
261. wuxi 4
262. open 4
263. zero 4
264. again 4
265. viper 4
266. course 4
267. power 4
268. furious 4
269. fault 4
270. guess 3
271. much 3
272. turn 3
273. sleep 3
274. yours 3
275. citizens 3
276. wish 3
277. leave 3
278. tofu 3
279. choose 3
280. room 3
281. special 3
282. rid 3
283. sacred 3
284. always 3
285. real 3
286. flabby 3
287. today 3
288. saying 3
289. takes 3
290. watch 3
291. warriors 3
292. palace 3
293. might 3
294. anything 3
295. her 3
296. listen 3
297. hit 3
298. looking 3
299. die 3
300. promise 3
301. down 3
302. vision 3
303. home 3
304. fulfill 3
305. begin 3
306. everything 3
307. change 3
308. feet 3
309. sign 3
310. feel 3
311. find 3
312. lngredient 3
313. boy 3
314. illusion 3
315. heard 3
316. impressive 3
317. fell 3
318. quits 3
319. face 3
320. every 3
321. anyone 3
322. finger 3
323. help 3
324. crossbows 3
325. accidents 3
326. jade 3
327. without 2
328. guards 2
329. excellent 2
330. pool 2
331. least 2
332. talking 2
333. hungry 2
334. after 2
335. toes 2
336. learn 2
337. veins 2
338. jail 2
339. respect 2
340. gone 2
341. awesomeness 2
342. supposed 2
343. mistake 2
344. message 2
345. better 2
346. happens 2
347. tried 2
348. heroes 2
349. guy 2
350. top 2
351. noise 2
352. sharp 2
353. almost 2
354. wake 2
355. allve 2
356. took 2
357. fruit 2
358. prisoner 2
359. around 2
360. weakness 2
361. any 2
362. anywhere 2
363. night 2
364. wanted 2
365. cut 2
366. students 2
367. moment 2
368. clay 2
369. found 2
370. escape 2
371. bluffing 2
372. broken 2
373. art 2
374. such 2
375. either 2
376. late 2
377. continue 2
378. full 2
379. next 2
380. nor 2
381. stronger 2
382. start 2
383. mouth 2
384. foes 2
385. three 2
386. fan 2
387. give 2
388. destroy 2
389. light 2
390. style 2
391. souvenir 2
392. behold 2
393. stuff 2
394. door 2
395. pointing 2
396. bear 2
397. totally 2
398. kind 2
399. bones 2
400. nerve 2
401. part 2
402. their 2
403. win 2
404. ears 2
405. diamond 2
406. glad 2
407. chew 2
408. dew 2
409. sure 2
410. folk 2
411. hurt 2
412. eyes 2
413. fly 2
414. answer 2
415. stairs 2
416. sometimes 2
417. talk 2
418. journey 2
419. blank 2
420. waiting 2
421. beginning 2
422. rather 2
423. worthy 2
424. training 2
425. brilliant 2
426. killed 2
427. hi 2
428. hope 2
429. thanks 2
430. bend 2
431. sky 2
432. chor 2
433. tomorrow 2
434. sense 2
435. hardest 2
436. become 2
437. brought 2
438. broth 2
439. world 2
440. man 2
441. stand 2
442. knows 2
443. break 2
444. off 2
445. fur 2
446. smile 2
447. picked 2
448. opponent 2
449. heart 2
450. present 2
451. student 2
452. head 2
453. kidding 2
454. hear 2
455. pretty 2
456. feared 2
457. zeng 2
458. except 2
459. seed 2
460. ghom 2
461. unless 2
462. started 2
463. amazing 2
464. please 2
465. rough 2
466. father 2
467. teach 2
468. step 2
469. whole 2
470. children 2
471. still 2
472. place 2
473. believed 2
474. bigger 2
475. sell 2
476. runs 2
477. failed 2
478. ground 2
479. hero 2
480. limitless 2
481. greatest 2
482. match 2
483. prepare 1
484. freocity 1
485. spoke 1
486. hall 1
487. shakes 1
488. poor 1
489. ten 1
490. energy 1
491. invisibility 1
492. size 1
493. evacuate 1
494. tenshu 1
495. shashabooey 1
496. happening 1
497. wing 1
498. southern 1
499. hang 1
500. ahead 1
501. blur 1
502. masters 1
503. same 1
504. quiet 1
505. close 1
506. flip 1
507. agreed 1
508. hand 1
509. resume 1
510. mahjong 1
511. weeping 1
512. faced 1
513. obeying 1
514. ridiculous 1
515. harmony 1
516. deadly 1
517. besides 1
518. serious 1
519. add 1
520. its 1
521. often 1
522. gather 1
523. insist 1
524. bouncing 1
525. shelf 1
526. escaped 1
527. wittle 1
528. young 1
529. wisdom 1
530. paintings 1
531. live 1
532. victory 1
533. halfway 1
534. concentrate 1
535. loosened 1
536. acupuncture 1
537. service 1
538. moves 1
539. taking 1
540. gift 1
541. called 1
542. ago 1
543. invisible 1
544. entire 1
545. pee 1
546. woryhy 1
547. deepest 1
548. property 1
549. hate 1
550. judge 1
551. darkness 1
552. order 1
553. forth 1
554. tough 1
555. spots 1
556. weapons 1
557. hundred 1
558. against 1
559. matter 1
560. scariest 1
561. walls 1
562. laid 1
563. honestly 1
564. filled 1
565. walks 1
566. messenger 1
567. buns 1
568. haijin 1
569. honor 1
570. body 1
571. upon 1
572. suits 1
573. points 1
574. scrolls 1
575. situps 1
576. new 1
577. already 1
578. heroic 1
579. pardon 1
580. touch 1
581. splinter 1
582. army 1
583. tempt 1
584. arms 1
585. outnumbered 1
586. collect 1
587. bodacity 1
588. combat 1
589. dreams 1
590. overexposure 1
591. accidentally 1
592. running 1
593. disappoint 1
594. agitated 1
595. teacher 1
596. extra 1
597. land 1
598. working 1
599. harder 1
600. says 1
601. sucking 1
602. blossom 1
603. havei 1
604. cry 1
605. minute 1
606. ladder 1
607. traveled 1
608. digesting 1
609. gotten 1
610. rotted 1
611. pits 1
612. skills 1
613. broke 1
614. almond 1
615. cub 1
616. mystery 1
617. archers 1
618. butt 1
619. perfectly 1
620. giving 1
621. two 1
622. cookies 1
623. excuse 1
624. attack 1
625. taken 1
626. patience 1
627. kitchen 1
628. funny 1
629. refused 1
630. bowed 1
631. wasnjust 1
632. ask 1
633. suck 1
634. till 1
635. becoming 1
636. strength 1
637. disregard 1
638. run 1
639. smell 1
640. anymore 1
641. himseif 1
642. forgetting 1
643. ate 1
644. dying 1
645. yourself 1
646. given 1
647. attractive 1
648. imagine 1
649. last 1
650. wash 1
651. doubt 1
652. develop 1
653. skadoosh 1
654. warn 1
655. warm 1
656. suited 1
657. name 1
658. selling 1
659. blind 1
660. away 1
661. shop 1
662. smelled 1
663. show 1
664. farmers 1
665. vegetables 1
666. cracked 1
667. yesterday 1
668. denying 1
669. trident 1
670. learned 1
671. mighfy 1
672. wiser 1
673. tenders 1
674. paid 1
675. happy 1
676. cart 1
677. put 1
678. whoever 1
679. far 1
680. lonely 1
681. greater 1
682. lousy 1
683. having 1
684. meets 1
685. threw 1
686. stations 1
687. completely 1
688. damage 1
689. guard 1
690. settle 1
691. smart 1
692. vowed 1
693. lot 1
694. protect 1
695. survive 1
696. fury 1
697. born 1
698. disgrace 1
699. kill 1
700. entrusted 1
701. sword 1
702. rage 1
703. hanging 1
704. defeated 1
705. dicecut 1
706. used 1
707. attractiveness 1
708. talent 1
709. pinky 1
710. bean 1
711. otherwise 1
712. cave 1
713. quadruple 1
714. created 1
715. water 1
716. both 1
717. most 1
718. twice 1
719. hurts 1
720. unraveled 1
721. absolutely 1
722. keep 1
723. game 1
724. bowl 1
725. point 1
726. mystical 1
727. thingies 1
728. revenge 1
729. saw 1
730. matters 1
731. third 1
732. neither 1
733. front 1
734. denied 1
735. simply 1
736. stupid 1
737. uncalled 1
738. sauce 1
739. path 1
740. suffer 1
741. fix 1
742. appreciate 1
743. safely 1
744. afterwards 1
745. grow 1
746. mile 1
747. whose 1
748. turning 1
749. foretold 1
750. plant 1
751. brother 1
752. facing 1
753. choosing 1
754. hot 1
755. claws 1
756. search 1
757. fool 1
758. personai 1
759. unlike 1
760. dear 1
761. charge 1
762. contain 1
763. keeping 1
764. tail 1
765. words 1
766. outraged 1
767. dragged 1
768. march 1
769. tells 1
770. taught 1
771. river 1
772. under 1
773. scare 1
774. thunder 1
775. developed 1
776. later 1
777. won 1
778. forgotten 1
779. wow 1
780. possibly 1
781. sightseeing 1
782. armor 1
783. parts 1
784. whispering 1
785. whomever 1
786. bidden 1
787. subtlety 1
788. deep 1
789. tears 1
790. forgive 1
791. getting 1
792. swallowed 1
793. perhaps 1
794. blinded 1
795. bloody 1
796. sit 1
797. historic 1
798. breathing 1
799. idiot 1
800. wearing 1
801. baby 1
802. iron 1
803. huh 1
804. avoid 1
805. explain 1
806. snicketysnake 1
807. kablooey 1
808. tables 1
809. revealed 1
810. action 1
811. fear 1
812. heartless 1
813. cookie 1
814. sensitive 1
815. being 1
816. someday 1
817. birthplace 1
818. hello 1
819. acting 1
820. turned 1
821. tournament 1
822. tipper 1
823. mention 1
824. mad 1
825. seemed 1
826. restaurant 1
827. strike 1
828. joke 1
829. urn 1
830. trusted 1
831. able 1
832. return 1
833. mattered 1
834. concerned 1
835. second 1
836. split 1
837. falls 1
838. trampoline 1
839. awaits 1
840. waste 1
841. months 1
842. turtle 1
843. drove 1
844. feeling 1
845. picking 1
846. steps 1
847. friends 1
848. forget 1
849. sore 1
850. laughter 1
851. since 1
852. immobilized 1
853. careful 1
854. breath 1
855. dreamed 1
856. brick 1
857. facial 1
858. chance 1
859. interesting 1
860. raised 1
861. ox 1
862. orange 1
863. painting 1
864. thatflapping 1
865. difficuit 1
866. authentic 1
867. easier 1
868. blades 1
869. glue 1
870. tongues 1
871. province 1
872. mama 1
873. height 1
874. based 1
875. closely 1
876. hike 1
877. peekyhole 1
878. highest 1
879. villagers 1
880. belly 1
881. fact 1
882. fist 1
883. seem 1
884. dumpling 1
885. stopped 1
886. though 1
887. decision 1
888. souls 1
889. makes 1
890. enemies 1
891. many 1
892. heavenly 1
893. stay 1
894. single 1
895. inspire 1
896. showed 1
897. willing 1
898. dynasty 1
899. awkward 1
900. hides 1
901. greatness 1
902. tweaked 1
903. finding 1
904. thrice 1
905. thin 1
906. sucked 1
907. once 1
908. flying 1
909. spilt 1
910. allow 1
911. figures 1
912. learning 1
913. figured 1
914. pure 1
915. speed 1
916. apple 1
917. summoned 1
918. wants 1
919. bath 1
920. lovely 1
921. slight 1
922. apply 1
923. bandit 1
924. lied 1
925. ginkgo 1
926. souvenirs 1
927. disgust 1
928. mark 1
929. humility 1
930. none 1
931. problem 1
932. venom 1
933. humor 1
934. road 1
935. asleep 1
936. guide 1
937. between 1
938. natural 1
939. lose 1
940. among 1
941. pride 1
942. praying 1
943. force 1
944. favorite 1
945. scared 1
946. love 1
947. slices 1
948. precautions 1
949. nope 1
950. north 1
951. enjoy 1
952. punch 1
953. across 1
954. flexibility 1
955. byebye 1
956. fall 1
957. buddy 1
958. regular 1
959. cook 1
960. cool 1
961. leaf 1
962. juice 1
963. nurture 1
964. stink 1
965. wings 1
966. apology 1
967. perfect 1
968. adequate 1
969. utter 1
970. propping 1
971. sound 1
972. own 1
973. clearly 1
974. hygiene 1
975. plain 1
976. biceps 1
977. goes 1
978. mysteries 1
979. finished 1
980. sent 1
981. safe 1
982. destined 1
983. seems 1
984. death 1
985. according 1
986. security 1
987. flex 1
988. knuckles 1
989. hearts 1
990. disappointing 1
991. cleaning 1
992. repay 1
993. motion 1
994. nauseous 1
995. treats 1

words don‘t occur in CET4(236):

1. i 184
2. is 104
3. warrior 49
4. are 49
5. was 46
6. shifu 29
7. yeah 27
8. kung 23
9. tai 23
10. fu 22
11. po 22
12. oogway 19
13. were 16
14. scroll 15
15. gonna 14
16. got 13
17. am 13
18. did 13
19. has 11
20. been 11
21. said 11
22. dad 10
23. tigress 9
24. had 9
25. mantis 8
26. destiny 8
27. done 7
28. coming 7
29. seen 7
30. guys 6
31. fat 6
32. an 6
33. told 5
34. does 5
35. stuck 5
36. awesome 5
37. cannot 5
38. making 4
39. loved 4
40. longer 4
41. meant 4
42. legendary 4
43. knew 4
44. wuxi 4
45. viper 4
46. tofu 3
47. flabby 3
48. warriors 3
49. feet 3
50. lngredient 3
51. heard 3
52. fell 3
53. face 3
54. crossbows 3
55. jade 3
56. veins 2
57. gone 2
58. awesomeness 2
59. supposed 2
60. tried 2
61. heroes 2
62. guy 2
63. allve 2
64. took 2
65. bluffing 2
66. stronger 2
67. foes 2
68. souvenir 2
69. behold 2
70. totally 2
71. chor 2
72. hardest 2
73. brought 2
74. broth 2
75. kidding 2
76. zeng 2
77. ghom 2
78. amazing 2
79. children 2
80. believed 2
81. bigger 2
82. greatest 2
83. freocity 1
84. spoke 1
85. invisibility 1
86. evacuate 1
87. tenshu 1
88. shashabooey 1
89. flip 1
90. agreed 1
91. mahjong 1
92. faced 1
93. bouncing 1
94. escaped 1
95. wittle 1
96. halfway 1
97. acupuncture 1
98. taking 1
99. pee 1
100. woryhy 1
101. deepest 1
102. darkness 1
103. scariest 1
104. laid 1
105. honestly 1
106. buns 1
107. haijin 1
108. honor 1
109. scrolls 1
110. situps 1
111. splinter 1
112. outnumbered 1
113. bodacity 1
114. overexposure 1
115. accidentally 1
116. running 1
117. agitated 1
118. harder 1
119. havei 1
120. gotten 1
121. rotted 1
122. broke 1
123. almond 1
124. cub 1
125. archers 1
126. butt 1
127. giving 1
128. cookies 1
129. taken 1
130. refused 1
131. wasnjust 1
132. becoming 1
133. disregard 1
134. anymore 1
135. himseif 1
136. forgetting 1
137. ate 1
138. skadoosh 1
139. trident 1
140. mighfy 1
141. wiser 1
142. paid 1
143. greater 1
144. lousy 1
145. having 1
146. threw 1
147. vowed 1
148. disgrace 1
149. entrusted 1
150. dicecut 1
151. attractiveness 1
152. pinky 1
153. quadruple 1
154. created 1
155. unraveled 1
156. mystical 1
157. thingies 1
158. denied 1
159. uncalled 1
160. foretold 1
161. facing 1
162. choosing 1
163. personai 1
164. outraged 1
165. dragged 1
166. taught 1
167. won 1
168. forgotten 1
169. wow 1
170. armor 1
171. whomever 1
172. bidden 1
173. subtlety 1
174. getting 1
175. historic 1
176. idiot 1
177. huh 1
178. snicketysnake 1
179. kablooey 1
180. heartless 1
181. cookie 1
182. someday 1
183. birthplace 1
184. tournament 1
185. tipper 1
186. urn 1
187. trampoline 1
188. turtle 1
189. drove 1
190. immobilized 1
191. facial 1
192. raised 1
193. thatflapping 1
194. difficuit 1
195. easier 1
196. mama 1
197. based 1
198. hike 1
199. peekyhole 1
200. highest 1
201. villagers 1
202. belly 1
203. stopped 1
204. enemies 1
205. heavenly 1
206. dynasty 1
207. greatness 1
208. tweaked 1
209. thrice 1
210. spilt 1
211. figured 1
212. summoned 1
213. bandit 1
214. lied 1
215. ginkgo 1
216. souvenirs 1
217. humility 1
218. venom 1
219. humor 1
220. nope 1
221. flexibility 1
222. byebye 1
223. buddy 1
224. nurture 1
225. stink 1
226. propping 1
227. hygiene 1
228. biceps 1
229. goes 1
230. mysteries 1
231. sent 1
232. destined 1
233. flex 1
234. knuckles 1
235. repay 1
236. nauseous 1

时间: 2024-10-13 16:04:50

电影功夫熊猫使用的单词分析的相关文章

对豆瓣电影近十年数据进行分析分析(截止2019年3月)

拿到数据先对数据进行处理:删除空行.删除重复值 对相应数据进行查找替换:(尽量保证数据的客观性.真实性) 中国浙江--中国 中国*--中国 美国*--美国 日本*--日本等 1.豆瓣电影近十年上映数量分析: 可以看出2016.2017年电影数量较高,那么哪几个国家的电影产量比较高呢? 数据显示,近十年中制片数量比较高的三个国家分别是美国.中国.日本,其中美国制片数量最高,为6544,中国处于中间位置,制片数量是5215,日本为3844.对制片数量较高的三个国家进行了对比,美国的电影生产数量最高,

我用Python进行情感分析,让程序员和女神牵手成功

先用电影评论来做情感分析,主要包括下面几个主要内容(看到最后哦): 1.准备文本数据 2.基于文本文档来构建特征向量 3.训练机器学习模型来区分电影评论的正面评论和负面评论(对你的女神同样适用哦~~) 4.使用外存学习和在线学习算法来处理大数据 在本篇文章中,主要介绍对于电影评论数据的准备工作. 一.情感分析 情感分析也称观点挖掘(opinion mining),是机器学习中自然语言处理(NLP)领域一个非常流行的分支,它主要是分析文档的情感倾向. 二.下载数据 请自行准备一个电影信息(或者直接

基于Spark MLlib平台的协同过滤算法---电影推荐系统

基于Spark MLlib平台的协同过滤算法---电影推荐系统 又好一阵子没有写文章了,阿弥陀佛...最近项目中要做理财推荐,所以,回过头来回顾一下协同过滤算法在推荐系统中的应用. 说到推荐系统,大家可能立马会想到协同过滤算法.本文基于Spark MLlib平台实现一个向用户推荐电影的简单应用.其中,主要包括三部分内容: 协同过滤算法概述 基于模型的协同过滤应用---电影推荐 实时推荐架构分析     一.协同过滤算法概述 本人对算法的研究,目前还不是很深入,这里简单的介绍下其工作原理. 通常,

中国电影产业在大数据方面的应用

中国电影产业已进入从制作到播出的全数字化时代.多位电影专家和学者认为,大数据新媒体技术还将给中国电影产业带来新机遇. 第23届中国金鸡百花电影节副主席康健民在此间表示,中国电影在完成从无声电影到有声电影,彩色胶片替代黑白胶片的两次伟大变革后,如今已进入全数字化时代. “中国电影越来越好看和好玩,除了有优秀的剧本和演员的逼真表演外,还在于新技术对电影的丰富.尤其是运用大量电脑特技制作出来的3D电影等,深受广大影迷喜爱.”康健民说. 多位专家在此间举行的“中国电影科技论坛”上认为,新媒体技术近些年快

测试数据科学家聚类技术的40个问题(附答案和分析)(转)

本文作者 Saurav Kaushik 是数据科学爱好者,还有一年他就从新德里 MAIT 毕业了,喜欢使用机器学习和分析来解决复杂的数据问题.看看以下40道题目,测试下你能答对多少.   作者 | Saurav Kaushik 翻译 | AI科技大本营(rgznai100)     介绍   创造出具有自我学习能力的机器--人们的研究已经被这个想法推动了十几年.如果要实现这个梦想的话,无监督学习和聚类将会起到关键性作用.但是,无监督学习在带来许多灵活性的同时,也带来了更多的挑战. 在从尚未被标记

第四个页面:制作电影资讯页面

笔记内容:第四个页面:制作电影资讯页面 笔记日期:2018-01-18 点击轮播图跳转到文章详情页面 之前的文章列表页面还有一个小功能没有实现,就是点击点击轮播图就能跳转到相应的文章详情页面,这个和点击文章列表跳转到文章详情页面的实现方式是一样的. post.wxml修改轮播图代码如下: <!-- 添加点击事件,这里利用了事件冒泡的机制 --> <swiper catchtap='onSwiperTap' indicator-dots='true' autoplay='true' int

NLP(十四) 情感分析

情感在自然语言中的表达方式 例句 解释 I am very happy 开心的情感 She is so :( 表达悲伤的图标 import nltk import nltk.sentiment.sentiment_analyzer def wordBasedSentiment(): positive_words = ['love','hope','joy'] text = 'Rainfall this year brings lot of hope and joy to Farmers.'.sp

哪吒票房逼近30亿,从豆瓣短评简单分析人们对哪吒的态度

目录 前言 分析 具体步骤 登录 爬取与存储 可视化分析 结语 前言 暑期档电影惨淡,但随着哪吒爆红开拓了新局面.这也是国产动画的首次爆红.在哪吒刚出,笔者以为最多10亿就算不错的了.没想过仅过了几天就破了10亿.接着头条又突破20亿--------目前11天27亿,势头增长依然很猛! 那笔者就很好奇人们是怎么看待这一步电影的呢? 哪吒?我想哪吒是陪伴过不少人成长的一部动画片吧,也是记忆中算得上最好看的动画片之一了.里面的哪吒.小猪熊.申公豹.石鸡娘娘令人历历在目.我们或许都被哪吒的敢打敢为.勇

词向量(WordVector)

Reference:http://licstar.net/archives/328 (比较综合的词向量研究现状分析) 起源:One-hot Representation.PCA 序:为什么NLP在模式识别里面比较难? Licstar的文章开头这么提到:语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号. 语音.图像数据表达不需要特殊的编码,而且有天生的顺序性和关联性,近似的数字会被认为是近似特征.然而语言就麻烦了. 比如通俗的One-hot