典型的垃圾收集器

1.Serial/Serial Old

  Serial/Serial Old收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。

2.ParNew

  ParNew收集器是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

3.Parallel Scavenge

  Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

4.Parallel Old

  Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

5.CMS

  CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

6.G1

  G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。

  下面补充一下关于内存分配方面的东西:

  

  对象的内存分配,往大方向上讲就是在堆上分配,对象主要分配在新生代的Eden Space和From Space,少数情况下会直接分配在老年代。如果新生代的Eden Space和From Space的空间不足,则会发起一次GC,如果进行了GC之后,Eden Space和From Space能够容纳该对象就放在Eden Space和From Space。在GC的过程中,会将Eden Space和From  Space中的存活对象移动到To Space,然后将Eden Space和From Space进行清理。如果在清理的过程中,To Space无法足够来存储某个对象,就会将该对象移动到老年代中。在进行了GC之后,使用的便是Eden space和To Space了,下次GC时会将存活对象复制到From Space,如此反复循环。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。

时间: 2024-10-14 14:54:10

典型的垃圾收集器的相关文章

JVM垃圾回收机制总结(5) :JDK垃圾收集器的配置命令

以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作系统对内存无限制.在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m. 典型设置: java -Xmx3550m -Xms3550m -Xmn2g –Xss128k -Xmx3550

深入理解JVM读书笔记二: 垃圾收集器与内存分配策略

3.2对象已死吗? 3.2.1 引用计数法 给对象添加一个引用计数器,每当有一个地方引用它的地方,计数器值+1:当引用失效,计数器值就减1;任何时候计数器为0,对象就不可能再被引用了. 它很难解决对象之间相互循环引用的问题. 3.2.2 可达性分析算法 这个算法的基本思路就是通过一系列的称为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC

转 G1垃圾收集器入门

转自:http://blog.csdn.net/zhanggang807/article/details/45956325 最近在复习Java GC,因为G1比较新,JDK1.7才正式引入,比较艰难的找到一篇写的很棒的文章,粘过来mark下.总结这篇文章和其他的资料,G1可以基本稳定在0.5s到1s左右的延迟,但是并不能保证更低的比如毫秒级(金融场景,所以说涉及到钱的,对技术要求真高),号称zing可以(但是一般做到低延时,在其他方面肯定有所损耗,比如吞吐),但是没有实际去研究过这种.另外,G1

深入理解JAVA虚拟机 垃圾收集器和内存分配策略

引用计数算法 很多教科书判断对象是否存活的算法是这样的:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不可能再被使用的. 客观地说,引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,也有一些比较著名的应用案例,例如微软的COM(Component Object Model)技术.使用ActionScript 3的FlashPlayer.Python语

第三章 垃圾收集器与内存分配策略

书中笔记: 也许并不会死: 要宣告回收一个对象死亡,至少要经历两次标记过程: 当可达性分析发现一个对象不可达的时候,将标记第一次并进行筛选,筛选的条件是此对象是否有必要执行finalize()方法,当对象没有覆盖finalize或者已被调用过,则虚拟机认为此对象没必要执行finalize,  如果判断有必要执行,则此对象将会被放入一个F-Queue队列中,之后会被一个优先级比较低的Finalizer线程去调用,但是并不会等待他执行完毕,因为此对象的finalize并不可靠,可能会死循环之类的,如

理解G1垃圾收集器日志

理解G1垃圾收集器日志 发表这个文章的目的是为了解释使用了G1垃圾收集器的一些跟踪和诊断选项而生成出来的垃圾收集日志的意义.我们来看一下使用一个提供最详细的信息级别的生产环境选项PrintGCDetails生成的输出日志.同时,我们也会看一下启用的两个诊断选项 -XX:+UnlockDiagnosticVMOptions . -XX:G1PrintRegionLivenessInfo 的输出信息,它们会打印出在标记周期末尾每个区域的活跃对象使用了总空间.占用大小和 -XX:+G1PrintHea

G1 垃圾收集器入门

G1 垃圾收集器入门 概览 目的 这个教程覆盖了如何使用G1垃圾收集器和它是怎样被Hotspot JVM使用的,你会学到G1收集器内部是如何工作的,使用G1时的一些关键命令行开关和记录它的操作的一些选项. 完成耗时 大约1小时 介绍 这个OBE(Oracle By Example)覆盖了Java里的Java虚拟机G1垃圾回收的基本概念,在OBE的第一部分, 在介绍垃圾收集器和性能时会附带提供JVM的概览.下一部分回顾一下Hotspot JVM的CMS收集器如何工作.然后,一步一步来指导使用Hot

深入理解java虚拟机----->垃圾收集器与内存分配策略(下)

1.  前言 内存分配与回收策略 JVM堆的结构分析(新生代.老年代.永久代) 对象优先在Eden分配 大对象直接进入老年代 长期存活的对象将进入老年代 动态对象年龄判定 空间分配担保  2.  垃圾收集器与内存分配策略 Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决两个问题: 给对象分配内存; 回收分配给对象的内存. 对象的内存分配,往大方向上讲就是在堆上的分配,对象主要分配在新生代的Eden区上.少数也可能分配在老年代,取决于哪一种垃圾收集器组合,还有虚拟机中的相关内存的参

《深入理解java虚拟机》笔记(7)JVM调优(分代垃圾收集器)

以下配置主要针对分代垃圾回收算法而言. 一.堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作系统对内存无限制.在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m. 典型设置: java -Xmx3550m -Xms3550m -Xmn2g –Xss128k -Xmx35