The French author Georges Perec (1936?C1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive ‘T‘s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
InputThe first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with |W| ≤ |T| ≤ 1,000,000.
OutputFor every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
#include<iostream> #include<algorithm> #include<cstdio> #include<vector> #include<string> #include<cstring> using namespace std; #define MAXN 1000001 typedef long long LL; /* KMP 查找子串出现的次数 */ char s[MAXN],t[MAXN]; int Next[MAXN]; void pre_kmp(int m) { int j,k; j = 0;k = -1;Next[0] = -1; while(j<m) if(k==-1||t[k]==t[j]) Next[++j] = ++k; else k = Next[k]; } int KMP(char s[],char t[],int n,int m) { int i,j,ans; i = j = ans = 0; if(n==1&&m==1) return (s[0]==t[0])?1:0; pre_kmp(m); for(i=0;i<n;i++) { while(j>0&&s[i]!=t[j]) j = Next[j]; if(s[i]==t[j]) j++; if(j==m) { ans++; j = Next[j]; } } return ans; } int main() { int T; scanf("%d",&T); while(T--) { scanf("%s%s",t,s); printf("%d\n",KMP(s,t,strlen(s),strlen(t))); } }