Java垃圾回收机制

Java的内存分布

在JVM中,内存是按照分代进行组织的。

其中,堆内存分为年轻代和年老代,非堆内存主要是Permanent区域,主要用于存储一些类的元数据,常量池等信息。而年轻代又分为两种,一种是Eden区域,另外一种是两个大小对等的Survivor区域。之所以将Java内存按照分代进行组织,主要是基于这样一个“弱假设” - 大多数对象都在年轻时候死亡。同时,将内存按照分代进行组织,使得我们可以在不同的分代上使用不同的垃圾回收算法,使得整个内存的垃圾回收更加有效。

年轻代的垃圾回收

在年轻代上采用的垃圾回收算法是“Mark-Copy”算法,并不同于我们前面所了解的任何一种基本垃圾回收算法,但是Mark算法是一样的,基于根对象找到所有的可达对象,具体可看Mark-Sweep算法中的Mark步骤. 而对于Copy算法,它仅仅是简单的将符合一定年龄的对象从一个分代拷贝到另一个分代。具体的回收过程如下:

首先,新对象的内存分配都是先在Eden区域中进行的,当Eden区域的空间不足于分配新对象时,就会触发年轻代上的垃圾回收(发生在Eden和Survivor内存区域上),我们称之为"minor garbage collection".同时,每个对象都有一个“年龄”,这个年龄实际上指的就是该对象经历过的minor gc的次数。如图1所示,当对象刚分配到Eden区域时,对象的年龄为“0”,当minor gc被触发后,所有存活的对象(仍然可达对象)会被拷贝到其中一个Survivor区域,同时年龄增长为“1”。并清除整个Eden内存区域中的非可达对象。

当第二次minor gc被触发时(如图2所示),JVM会通过Mark算法找出所有在Eden内存区域和Survivor1内存区域存活的对象,并将他们拷贝到新的Survivor2内存区域(这也就是为什么需要两个大小一样的Survivor区域的原因),同时对象的年龄加1. 最后,清除所有在Eden内存区域和Survivor1内存区域的非可达对象。

当对象的年龄足够大(这个年龄可以通过JVM参数进行指定,这里假定是2),当minor gc再次发生时,它会从Survivor内存区域中升级到年老代中,如图3所示。

其实,即使对象的年龄不够大,但是Survivor内存区域中没有足够的空间来容纳从Eden升级过来的对象时,也会有部分对象直接升级到Tenured内存区域中。

年老代的垃圾回收

当minor gc发生时,又有对象从Survivor区域升级到Tenured区域,但是Tenured区域已经没有空间容纳新的对象了,那么这个时候就会触发年老代上的垃圾回收,我们称之为"major garbage collection".

而在年老代上选择的垃圾回收算法则取决于JVM上采用的是什么垃圾回收器。通过的垃圾回收器有两种:Parallel Scavenge(PS) 和Concurrent Mark Sweep(CMS)。这两种垃圾回收器的不同更多的是体现在年老代的垃圾回收过程中,年轻代的垃圾回收过程在这两种垃圾回收器中基本上是一致的。

就像其名字所表示的那样,Parallel Scavenge垃圾回收器在执行垃圾回收时使用了多线程来一起进行垃圾回收,这样可以提高垃圾回收的效率。而Concurrent Mark Sweep垃圾回收器在进行垃圾回收时,应用程序可以同时运行。

Parallel Scavenge

PS垃圾回收器在年老代上采用的垃圾回收算法可以看作是标记-清除算法标记-压缩算法的结合体。

首先,PS垃圾回收器先是会在年老代上使用标记-清除算法来回收掉非可达对象所占有的空间,但是我们知道,标记清除算法的一个缺陷就是它会引起内存碎片问题。继而有可能会引发连续的major gc。假设当前存在的内存碎片有10M,但最大的内存碎片只能容纳2M的对象,这个时候如果有一个3M的对象从Survivor区域升级到Tenured区域,那Tenured区域也没有办法存放这个3M的对象。结果就是不断的触发major gc,直到Out of Memory。所以,PS垃圾回收器在清除非可达对象后,还会进行一次compact,来消除内存碎片。

Concurrent Mark Sweep

CMS垃圾收集器相比于PS垃圾收集器,它成功的减少了垃圾收集时暂停应用程序的时间,因为CMS在进行垃圾收集时,应用程序是可以并行运行的。下面让我们来看看它是怎么做到的。

从它的名字可以看出,CMS垃圾收集器在年老代上采用的垃圾回收算法是标记-清除算法。但是,它跟标准的标记-清除算法略有不同。它主要分为四个阶段:

  1. Initial Mark阶段 - 这个阶段是Stop-The-World的,它会暂停应用程序的运行,但是在这里阶段,它不会标记出在Tenured区域中所有的可达对象。它只会从根对象开始出发,标记到根对象的第一层孩子节点即停止。然后恢复应用程序的运行。所以,这个暂停应用程序的时间是很短的。
  2. Concurrent Mark阶段 - 在这个阶段中,CMS垃圾回收器以Initial Mark阶段标记的节点为根对象,重新开始标记Tenured区域中的可达对象。当然,在这个阶段中是不需要暂停应用程序的。这也是它称为"Concurrent Mark"的原因。这同时也造成了一个问题,那就是由于CMS垃圾回收器和应用程序同时运行,Concurrent Mark阶段它并不保证在Tenured区域的可达对象都被标记了 - 应用程序一直在分配新对象。
  3. Remark阶段 - 由于Concurrent Mark阶段它并不保证在Tenured区域的可达对象都被标记了,所以我们需要再次暂停应用程序,确保所有的可达对象都被标记。为了加快速度,这里也采用了多线程来同时标记可达对象。
  4. Concurrent Sweep阶段 - 最后,恢复应用程序的执行,同时CMS执行sweep,来清除所有非可达对象所占用的内存空间。

从下图可以看到PS和CMS垃圾收集器的区别:

黑色箭头代表应用程序的运行,绿色箭头代表CMS垃圾收集器的运行。一根线条表示单线程,多个线条表示多线程。

所以,相比于PS垃圾收集器,CMS垃圾收集器成功的减少了应用程序暂时的时间。

Garbage First(G1)垃圾收集器

但是很不幸的是,CMS垃圾收集器虽然减少了暂停应用程序的运行时间,但是由于它没有Compact阶段,它还是存在着内存碎片问题。于是,为了去除内存碎片问题,同时又保留CMS垃圾收集器低暂停时间的优点,JAVA7发布了一个新的垃圾收集器 - G1垃圾收集器。它会在未来逐步替换掉CMS垃圾收集器。

G1垃圾收集器和CMS垃圾收集器有几点不同。首先,最大的不同是内存的组织方式变了。Eden,Survivor和Tenured等内存区域不再是连续的了,而是变成了一个个大小一样的region - 每个region从1M到32M不等。

一个region有可能属于Eden,Survivor或者Tenured内存区域。图中的E表示该region属于Eden内存区域,S表示属于Survivor内存区域,T表示属于Tenured内存区域。图中空白的表示未使用的内存空间。G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。这种内存区域主要用于存储大对象-即大小超过一个region大小的50%的对象。

在G1垃圾收集器中,年轻代的垃圾回收过程跟PS垃圾收集器和CMS垃圾收集器差不多,新对象的分配还是在Eden region中,当所有Eden region的大小超过某个值时,触发minor gc,回收Eden region和Survivor region上的非可达对象,同时升级存活的可达对象到对应的Survivor region和Tenured region上。对象从Survivor region升级到Tenured region依然是取决于对象的年龄。

对于年老代上的垃圾收集,G1垃圾收集器也分为4个阶段,基本跟CMS垃圾收集器一样,但略有不同:

  1. Initial Mark阶段 - 同CMS垃圾收集器的Initial Mark阶段一样,G1也需要暂停应用程序的执行,它会标记从根对象出发,在根对象的第一层孩子节点中标记所有可达的对象。但是G1的垃圾收集器的Initial Mark阶段是跟minor gc一同发生的。也就是说,在G1中,你不用像在CMS那样,单独暂停应用程序的执行来运行Initial Mark阶段,而是在G1触发minor gc的时候一并将年老代上的Initial Mark给做了。
  2. Concurrent Mark阶段 - 在这个阶段G1做的事情跟CMS一样。但G1同时还多做了一件事情,那就是,如果在Concurrent Mark阶段中,发现哪些Tenured region中对象的存活率很小或者基本没有对象存活,那么G1就会在这个阶段将其回收掉,而不用等到后面的clean up阶段。这也是Garbage First名字的由来。同时,在该阶段,G1会计算每个 region的对象存活率,方便后面的clean up阶段使用 。
  3. Remark阶段 - 在这个阶段G1做的事情跟CMS一样, 但是采用的算法不同,G1采用一种叫做SATB(snapshot-at-the-begining)的算法能够在Remark阶段更快的标记可达对象。
  4. Clean up/Copy阶段 - 在G1中,没有CMS中对应的Sweep阶段。相反 它有一个Clean up/Copy阶段,在这个阶段中,G1会挑选出那些对象存活率低的region进行回收,这个阶段也是和minor gc一同发生的,如下图所示:

从上可以看到,由于Initial Mark阶段和Clean up/Copy阶段都是跟minor gc同时发生的,相比于CMS,G1暂停应用程序的时间更少,从而提高了垃圾回收的效率。

摘自:http://www.jianshu.com/p/778dd3848196

时间: 2024-10-25 06:20:18

Java垃圾回收机制的相关文章

Java 垃圾回收机制(早期版本)

Java 垃圾回收机制在我们普通理解来看,应该视为一种低优先级的后台进程来实现的,其实早期版本的Java虚拟机并非以这种方式实现的. 先从一种很简单的垃圾回收方式开始. 引用计数 引用计数是一种简单但是速度很慢的垃圾回收技术. 每个对象都含有要给引用计数器,当有引用连接至对象时,引用计数+1. 当引用离开作用域或者被置为null时,引用计数-1. 当发现某个对象的引用计数为0时,就释放其占用的空间.   这种方法开销在整个程序生命周期中持续发生,并且该方法有个缺陷,如果对象之间存在循环引用,可能

Java垃圾回收机制的工作原理

Java垃圾回收机制的工作原理 [博主]高瑞林 [博客地址]http://www.cnblogs.com/grl214 一.Java中引入垃圾回收机制的作用 当我们建完类之后,创建对象的同时,进行内存空间的分配,为了防止内存空间爆满,java引入了垃圾回收机制,将不再引用的对象进行回收,释放内存,循环渐进,从而防止内存空间不被爆满. 1.垃圾回收机制的工作原理 创建的对象存储在堆里面,把堆比喻为院子中的土地,把对象比喻为土地的管理者,院子比喻为java虚拟机,当创建一个对象时,java虚拟机将给

Java深度历险(四)——Java垃圾回收机制与引用类型

Java语言的一个重要特性是引入了自动的内存管理机制,使得开发人员不用自己来管理应用中的内存.C/C++开发人员需要通过malloc/free 和new/delete等函数来显式的分配和释放内存.这对开发人员提出了比较高的要求,容易造成内存访问错误和内存泄露等问题.一个常见的问题是会产生“悬挂引用(dangling references)”,即一个对象引用所指向的内存区块已经被错误的回收并重新分配给新的对象了,程序如果继续使用这个引用的话会造成不可预期的结果.开发人员有可能忘记显式的调用释放内存

Java垃圾回收机制以及内存泄漏

原文地址 前言 在segmentfault上看到一个问题:java有完善的GC机制,那么在java中是否会出现内存泄漏的问题,以及能否给出一个内存泄漏的案例.本问题视图给出此问题的完整答案. 垃圾回收机制简介 在程序运行过程中,每创建一个对象都会被分配一定的内存用以存储对象数据.如果只是不停的分配内存,那么程序迟早面临内存不足的问题.所以在任何语言中,都会有一个内存回收机制来释放过期对象的内存,以保证内存能够被重复利用. 内存回收机制按照实现角色的不同可以分为两种,一种是程序员手动实现内存的释放

成为Java GC专家(3)—如何优化Java垃圾回收机制

本文作者: ImportNew - 王晓杰 未经许可,禁止转载! 本文是成为Java GC专家系列文章的第三篇.在第一篇<成为JavaGC专家Part I — 深入浅出Java垃圾回收机制>中我们学习了不同GC算法的执行过程,GC是如何工作的,什么是新生代和老年代,你应该了解的JDK7中的5种GC类型,以及这5种类型对于应用性能的影响. 在第二篇<成为JavaGC专家Part II — 如何监控Java垃圾回收机制>,我解释了JVM实际上是如何执行垃圾回收的,我们如何监控GC,以及

Java垃圾回收机制--入门

Java垃圾回收机制(gc) 在程序运行过程中,每创建一个对象都会被分配一定的内存用以存储对象数据.如果一味的去占用内存而不释放,则会遇到内存溢出的问题. 在程序运行的过程中,gc会用引用计数法去统计对象被多少其他对象持有,如果对象已经没有被引用,那么该对象转变为可复活状态 (对于gc线程来说对象有三种状态: 1.     可触及状态:程序中还有变量引用,那么此对象为可触及状态. 2.     可复活状态:当程序中已经没有变量引用这个对象,那么此对象由可触及状态转为可复活状态.CG线程将在一定的

【Java】Java垃圾回收机制

Java垃圾回收机制 说到垃圾回收(Garbage Collection,GC),很多人就会自然而然地把它和Java联系起来.在Java中,程序员不需要去关心内存动态分配和垃圾回收的问题,这一切都交给了JVM来处理.顾名思义,垃圾回收就是释放垃圾占用的空间,那么在Java中,什么样的对象会被认定为“垃圾”?那么当一些对象被确定为垃圾之后,采用什么样的策略来进行回收(释放空间)?在目前的商业虚拟机中,有哪些典型的垃圾收集器?下面我们就来逐一探讨这些问题.以下是本文的目录大纲: 一.如何确定某个对象

【Java】怎么回答java垃圾回收机制

(1) GC是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法. (2) 对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址.大小以及使用情况.通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象.通过这种方式确定哪些对象是"可达的",哪些

Java 垃圾回收机制概述

摘要: Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区.关于对象分配内存问题,笔者的博文<JVM 内存模型概述>已经阐述了 如何划分可用空间及其涉及到的线程安全问题,本文将结合垃圾回收策略进一步给出内存分配规则.垃圾回收机制的引入可以有效的防止内存泄露.保证内存的有效使用,也大大解放了Java程序员的双手,使得他们在编写程序的时候不再需要考虑内存管理.本文着重

Java垃圾回收机制学习心得

本文章是我在学习Java垃圾回收机制中总结的知识点的整理,在此特别感谢http://www.cnblogs.com/andy-zcx/p/5522836.html和http://blog.csdn.net/zsuguangh/article/details/6429592的博客. 内存泄漏:内存泄漏是指内存空间使用完毕后未进行回收操作.一般来说,Java中的内存泄漏是因为内存对象生命周期超出其在程序中存在的时间长度 垃圾回收意义:解决编程时需要考虑的内存管理问题,有效解决内存泄漏问题,充分利用空