Python之路【第三篇】:Python基础(二)
内置函数 一
详细见python文档,猛击这里
文件操作
操作文件时,一般需要经历如下步骤:
- 打开文件
- 操作文件
一、打开文件
1 |
|
注:python中打开文件有两种方式,即:open(...) 和 file(...) ,本质上前者在内部会调用后者来进行文件操作,推荐使用 open。
打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。
打开文件的模式有:
- r,只读模式(默认)。
- w,只写模式。【不可读;不存在则创建;存在则删除内容;】
- a,追加模式。【可读; 不存在则创建;存在则只追加内容;】
"+" 表示可以同时读写某个文件
- r+,可读写文件。【可读;可写;可追加】
- w+,写读
- a+,同a
"U"表示在读取时,可以将 \r \n \r\n自动转换成 \n (与 r 或 r+ 模式同使用)
- rU
- r+U
"b"表示处理二进制文件(如:FTP发送上传ISO镜像文件,linux可忽略,windows处理二进制文件时需标注)
- rb
- wb
- ab
二、操作操作
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
三、with
为了避免打开文件后忘记关闭,可以通过管理上下文,即:
1 2 3 |
|
如此方式,当with代码块执行完毕时,内部会自动关闭并释放文件资源。
在Python 2.7 后,with又支持同时对多个文件的上下文进行管理,即:
1 2 |
|
四、那么问题来了...
1、如何在线上环境优雅的修改配置文件?
global log 127.0.0.1 local2 daemon maxconn 256 log 127.0.0.1 local2 info defaults log global mode http timeout connect 5000ms timeout client 50000ms timeout server 50000ms option dontlognull listen stats :8888 stats enable stats uri /admin stats auth admin:1234 frontend oldboy.org bind 0.0.0.0:80 option httplog option httpclose option forwardfor log global acl www hdr_reg(host) -i www.oldboy.org use_backend www.oldboy.org if www backend www.oldboy.org server 100.1.7.9 100.1.7.9 weight 20 maxconn 3000
1、查 输入:www.oldboy.org 获取当前backend下的所有记录 2、新建 输入: arg = { ‘bakend‘: ‘www.oldboy.org‘, ‘record‘:{ ‘server‘: ‘100.1.7.9‘, ‘weight‘: 20, ‘maxconn‘: 30 } } 3、删除 输入: arg = { ‘bakend‘: ‘www.oldboy.org‘, ‘record‘:{ ‘server‘: ‘100.1.7.9‘, ‘weight‘: 20, ‘maxconn‘: 30 } }
#!/usr/bin/env python # -*- coding:utf-8 -*- import json import os def fetch(backend): backend_title = ‘backend %s‘ % backend record_list = [] with open(‘ha‘) as obj: flag = False for line in obj: line = line.strip() if line == backend_title: flag = True continue if flag and line.startswith(‘backend‘): flag = False break if flag and line: record_list.append(line) return record_list def add(dict_info): backend = dict_info.get(‘backend‘) record_list = fetch(backend) backend_title = "backend %s" % backend current_record = "server %s %s weight %d maxconn %d" % (dict_info[‘record‘][‘server‘], dict_info[‘record‘][‘server‘], dict_info[‘record‘][‘weight‘], dict_info[‘record‘][‘maxconn‘]) if not record_list: record_list.append(backend_title) record_list.append(current_record) with open(‘ha‘) as read_file, open(‘ha.new‘, ‘w‘) as write_file: flag = False for line in read_file: write_file.write(line) for i in record_list: if i.startswith(‘backend‘): write_file.write(i+‘\n‘) else: write_file.write("%s%s\n" % (8*" ", i)) else: record_list.insert(0, backend_title) if current_record not in record_list: record_list.append(current_record) with open(‘ha‘) as read_file, open(‘ha.new‘, ‘w‘) as write_file: flag = False has_write = False for line in read_file: line_strip = line.strip() if line_strip == backend_title: flag = True continue if flag and line_strip.startswith(‘backend‘): flag = False if not flag: write_file.write(line) else: if not has_write: for i in record_list: if i.startswith(‘backend‘): write_file.write(i+‘\n‘) else: write_file.write("%s%s\n" % (8*" ", i)) has_write = True os.rename(‘ha‘,‘ha.bak‘) os.rename(‘ha.new‘,‘ha‘) def remove(dict_info): backend = dict_info.get(‘backend‘) record_list = fetch(backend) backend_title = "backend %s" % backend current_record = "server %s %s weight %d maxconn %d" % (dict_info[‘record‘][‘server‘], dict_info[‘record‘][‘server‘], dict_info[‘record‘][‘weight‘], dict_info[‘record‘][‘maxconn‘]) if not record_list: return else: if current_record not in record_list: return else: del record_list[record_list.index(current_record)] if len(record_list) > 0: record_list.insert(0, backend_title) with open(‘ha‘) as read_file, open(‘ha.new‘, ‘w‘) as write_file: flag = False has_write = False for line in read_file: line_strip = line.strip() if line_strip == backend_title: flag = True continue if flag and line_strip.startswith(‘backend‘): flag = False if not flag: write_file.write(line) else: if not has_write: for i in record_list: if i.startswith(‘backend‘): write_file.write(i+‘\n‘) else: write_file.write("%s%s\n" % (8*" ", i)) has_write = True os.rename(‘ha‘,‘ha.bak‘) os.rename(‘ha.new‘,‘ha‘) if __name__ == ‘__main__‘: """ print ‘1、获取;2、添加;3、删除‘ num = raw_input(‘请输入序号:‘) data = raw_input(‘请输入内容:‘) if num == ‘1‘: fetch(data) else: dict_data = json.loads(data) if num == ‘2‘: add(dict_data) elif num == ‘3‘: remove(dict_data) else: pass """ #data = "www.oldboy.org" #fetch(data) #data = ‘{"backend": "tettst.oldboy.org","record":{"server": "100.1.7.90","weight": 20,"maxconn": 30}}‘ #dict_data = json.loads(data) #add(dict_data) #remove(dict_data)
2、文件处理中xreadlines的内部是如何实现的呢?
自定义函数
一、背景
在学习函数之前,一直遵循:面向过程编程,即:根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复制到现需功能处,如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
腚眼一看上述代码,if条件语句下的内容可以被提取出来公用,如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
对于上述的两种实现方式,第二次必然比第一次的重用性和可读性要好,其实这就是函数式编程和面向过程编程的区别:
- 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
- 面向对象:对函数进行分类和封装,让开发“更快更好更强...”
函数式编程最重要的是增强代码的重用性和可读性
二、 函数的定义和使用
1 2 3 4 5 |
|
函数的定义主要有如下要点:
- def:表示函数的关键字
- 函数名:函数的名称,日后根据函数名调用函数
- 函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
- 参数:为函数体提供数据
- 返回值:当函数执行完毕后,可以给调用者返回数据。
以上要点中,比较重要有参数和返回值:
1、返回值
函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
2、参数
为什么要有参数?
def CPU报警邮件() #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 def 硬盘报警邮件() #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 def 内存报警邮件() #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 while True: if cpu利用率 > 90%: CPU报警邮件() if 硬盘使用空间 > 90%: 硬盘报警邮件() if 内存占用 > 80%: 内存报警邮件()
def 发送邮件(邮件内容) #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 while True: if cpu利用率 > 90%: 发送邮件("CPU报警了。") if 硬盘使用空间 > 90%: 发送邮件("硬盘报警了。") if 内存占用 > 80%: 发送邮件("内存报警了。")
函数的有三中不同的参数:
- 普通参数
- 默认参数
- 动态参数
# ######### 定义函数 ######### # name 叫做函数func的形式参数,简称:形参 def func(name): print name # ######### 执行函数 ######### # ‘wupeiqi‘ 叫做函数func的实际参数,简称:实参 func(‘wupeiqi‘)
def func(name, age = 18): print "%s:%s" %(name,age) # 指定参数 func(‘wupeiqi‘, 19) # 使用默认参数 func(‘alex‘) 注:默认参数需要放在参数列表最后
def func(*args): print args # 执行方式一 func(11,33,4,4454,5) # 执行方式二 li = [11,2,2,3,3,4,54] func(*li)
def func(**kwargs): print args # 执行方式一 func(name=‘wupeiqi‘,age=18) # 执行方式二 li = {‘name‘:‘wupeiqi‘, age:18, ‘gender‘:‘male‘} func(**li)
def func(*args, **kwargs): print args print kwargs
扩展:发送邮件实例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
lambda表达式
学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:
1 2 3 4 5 6 7 8 |
|
对于简单的函数,也存在一种简便的表示方式,即:lambda表达式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
lambda存在意义就是对简单函数的简洁表示
内置函数 二
一、map
遍历序列,对序列中每个元素进行操作,最终获取新的序列。
li = [11, 22, 33] new_list = map(lambda a: a + 100, li)
li = [11, 22, 33] sl = [1, 2, 3] new_list = map(lambda a, b: a + b, li, sl)
二、filter
对于序列中的元素进行筛选,最终获取符合条件的序列
li = [11, 22, 33] new_list = filter(lambda arg: arg > 22, li) #filter第一个参数为空,将获取原来序列
三、reduce
对于序列内所有元素进行累计操作
li = [11, 22, 33] result = reduce(lambda arg1, arg2: arg1 + arg2, li) # reduce的第一个参数,函数必须要有两个参数 # reduce的第二个参数,要循环的序列 # reduce的第三个参数,初始值
yield生成器
1、对比range 和 xrange 的区别
1 2 3 4 |
|
如上代码所示,range会在内存中创建所有指定的数字,而xrange不会立即创建,只有在迭代循环时,才去创建每个数组。
def nrange(num): temp = -1 while True: temp = temp + 1 if temp >= num: return else: yield temp
2、文件操作的 read 和 xreadlinex 的的区别
1 2 |
|
def NReadlines(): with open(‘log‘,‘r‘) as f: while True: line = f.next() if line: yield line else: return for i in NReadlines(): print i
def NReadlines(): with open(‘log‘,‘r‘) as f: seek = 0 while True: f.seek(seek) data = f.readline() if data: seek = f.tell() yield data else: return for item in NReadlines(): print item
装饰器
装饰器是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类,使用装饰器可以在函数执行前和执行后添加相应操作。
1 2 3 4 5 6 7 8 9 10 |
|
import functools def wrapper(func): @functools.wraps(func) def wrapper(): print ‘before‘ func() print ‘after‘ return wrapper @wrapper def foo(): print ‘foo‘
#!/usr/bin/env python #coding:utf-8 def Before(request,kargs): print ‘before‘ def After(request,kargs): print ‘after‘ def Filter(before_func,after_func): def outer(main_func): def wrapper(request,kargs): before_result = before_func(request,kargs) if(before_result != None): return before_result; main_result = main_func(request,kargs) if(main_result != None): return main_result; after_result = after_func(request,kargs) if(after_result != None): return after_result; return wrapper return outer @Filter(Before, After) def Index(request,kargs): print ‘index‘ if __name__ == ‘__main__‘: Index(1,2)
冒泡算法
需求:请按照从小到大对列表 [13, 22, 6, 99, 11] 进行排序
思路:相邻两个值进行比较,将较大的值放在右侧,依次比较!
li = [13, 22, 6, 99, 11] for m in range(4): # 等价于 #for m in range(len(li)-1): if li[m]> li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp
li = [13, 22, 6, 99, 11] for m in range(4): # 等价于 #for m in range(len(li)-1): if li[m]> li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp for m in range(3): # 等价于 #for m in range(len(li)-2): if li[m]> li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp for m in range(2): # 等价于 #for m in range(len(li)-3): if li[m]> li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp for m in range(1): # 等价于 #for m in range(len(li)-4): if li[m]> li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp print li
li = [13, 22, 6, 99, 11] for i in range(1,5): for m in range(len(li)-i): if li[m] > li[m+1]: temp = li[m+1] li[m+1] = li[m] li[m] = temp
递归
利用函数编写如下数列:
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
def func(arg1,arg2): if arg1 == 0: print arg1, arg2 arg3 = arg1 + arg2 print arg3 func(arg2, arg3) func(0,1)