深入理解无穷级数和的定义(the sum of the series)

Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those terms together: a1 + a2 + a3 + ···. To emphasize that there are an infinite number of terms, a series is often called an infinite series.

值得注意的是等式右边并不是左边的和,只是左边的缩写形式。

because when you start from adding up the first two terms of the infinite sequence, and then add the third term, the 4-th term, ..., no matter how much time you spend on adding these terms, you always end up adding up only a finite number of terms , thus you couldn‘t add up an infinite number of terms, so cannot compute their sum by adding one term after another.

An easy way that an infinite series has a sum is if all the $a_n$ are zero for n sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.

Working out the properties of the series that has a sum even if infinitely many terms are non-zero is the essence of the study of series. Consider the example

It is possible to "visualize" it has sum on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, ?, ?, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: when we have marked off ?, we still have a piece of length ? unmarked, so we can certainly mark the next ?. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2. In other words, the series has an upper bound. As for proving the series is equal to 2, we choose $$a_n=1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}$$ and $b_n=2$, then $$a_n<1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots\leq b_n$$ holds for every nature number $n$ , according to the nested intervals theorem the intersection of all the $[a_n,b_n]$ contains exactly one real number, since 2 is an element of each of these intervals, $1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots = 2$, this proved the sum of the series is 2.

It is also possible to prove $$1 - {1 \over 2} + {1 \over 3} - {1 \over 4} + {1 \over 5} - \cdots =\sum_{n=1}^\infty {\left(-1\right)^{n-1} \over n}=\ln(2)$$ using the nested intervals theorem by choosing $a_k=\sum_{n=1}^{2k} {\left(-1\right)^{n-1} \over n}$ and $b_k=\sum_{n=1}^{2k+1} {\left(-1\right)^{n-1} \over n}$ for all natural numbers $k$.

While a more general method to get the sum of a series is by taking limit.

As you see, we defined the sum of a infinite series, this result seems not that naturally like 2 + 2 is computed out equal to 4,so is the definition give us the true sum of the infinite series? $\lim _{n\rightarrow \infty }S_{n}$ has a meaning that the number of the first n terms added up increases indefinitely, this is equivalent to $$a_{1}+a_{2}+a_{3}+\cdots $$, thus defining the sum of a series as the limit of the sequence of its partial sums is intuitively plausible.

Given the definition gives the true sum of the infinite series, the statement that 0.999… = 1 can itself be interpreted and proven as:

${\displaystyle 0.999\ldots =\lim _{n\to \infty }0.\underbrace {99\ldots 9} _{n}=\lim _{n\to \infty }\sum _{k=1}^{n}{\frac {9}{10^{k}}}=\lim _{n\to \infty }\left(1-{\frac {1}{10^{n}}}\right)=1-\lim _{n\to \infty }{\frac {1}{10^{n}}}=1\,-\,0=1.\,}$

批注:一开始convergent和divergent是对一个sequence来说的,定义如下

但怎么能说级数convergent和divergent了呢?级数,根据上面的定义不就是一个数列的无穷多项依次加起来的一个和式吗?对于一个和式能说convergent和divergent吗?我看不如说一个级数has a sum or not,然后说其部分和组成的数列convergent和divergent似乎比较合适!说一个series converges to a limit L不如说这个series =L。

quoted from http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-convergence-2009-1.pdf

时间: 2024-10-16 16:34:50

深入理解无穷级数和的定义(the sum of the series)的相关文章

关于DFS和BFS的理解 以及坐标的定义

1: 坐标类型搜索 :这种类型的搜索题目通常来说简单的比较简单,复杂的通常在边界的处理和情况的讨论方面会比较复杂,分析这类问题,我们首先要抓住题目的意思,看具体是怎么建立坐标系(特别重要), 然后仔细分析到搜索的每一个阶段是如何通过条件转移到下一个阶段的.确定每一次递归(对于DFS)的回溯和深入条件,对于BFS,要注意每一次入队的条件同时注意判重.要牢牢把握 目标状态是一个什么状态,在什么时候结束搜索.还有,DFS过程的参数如何设定,是带参数还是不带参数,带的话各个参数一定要保证能完全的表示一个

[译] 理解PHP内部函数的定义(给PHP开发者的PHP源码-第二部分)

文章来自:http://www.aintnot.com/2016/02/10/understanding-phps-internal-function-definitions-ch 原文:https://nikic.github.io/2012/03/16/Understanding-PHPs-internal-function-definitions.html 欢迎来到"给PHP开发者的PHP源码"系列的第二部分. 在上一篇中,ircmaxell说明了你可以在哪里找到PHP的源码,它

顺时针/螺旋式规则 理解C/C++复杂定义

本文译自 spiral rule,后附全文. 顺时针/螺旋式规则 顺时针/螺旋式规则是一种能让任何C程序员理解程序声明的方法.如下3个步骤:1.从要确定类型的元素开始,按顺时针方向把下面遇到的元素替换为相应的语句,例如:[X] or [] ==>Array X size of ... or Array undefined size of ..;(type1,type2) ==>function passing type1 and type2 returning... * ==>point

想了解概率图模型?你要先理解图论的基本定义与形式

图论一直是数学里十分重要的学科,其以图为研究对象,通常用来描述某些事物之间的某种特定关系.而在机器学习的世界里,我们希望从数据中挖掘出隐含信息或模型.因此,如果我们将图中的结点作为随机变量,连接作为相关性关系,那么我们就能构造出图模型,并期望解决这一问题.本文将为构造该模型提供最基础的概念. 我们都知道机器学习里的决策树,其可以表示为给定特征条件下类的条件概率分布.并且我们知道决策树由结点和有向边组成,结点又由表示特征的内部结点和表示类的叶结点构成.而通常决策树的学习又包括了特征的选择.决策树的

【零基础学习iOS开发】【02-C语言】11-函数的声明和定义

在上一讲中,简单介绍了函数的定义和使用,只要你想完成一个新功能,首先想到的应该是定义一个新的函数来完成这个功能.这讲继续介绍函数的其他用法和注意事项. 一.函数的声明 1.在C语言中,函数的定义顺序是有讲究的:默认情况下,只有后面定义的函数才可以调用前面定义过的函数 1 int sum(int a, int b) { 2 return a + b; 3 } 4 5 int main() 6 { 7 int c = sum(1, 4); 8 return 0; 9 } 第5行定义的main函数调用

理解javascript中的回调函数(callback)

以下内容来源于:http://www.jb51.net/article/54641.htm 最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: app.use(function(req, res, next) {    var err = new Error('Not Found');    err.status = 404;    next(err);}); app是对象,use是方法,方

JAVAWEB开发之JSTL标签库的使用、 自己定义EL函数、自己定义标签(带属性的、带标签体的)

JSTL JSTL简单介绍: JSTL的全称:JSP Standard Tag Library.JSP标准标签库 JSTL的作用: 提供给Java Web开发者一个标准通用的标签函数库 和EL来代替传统直接在页面上嵌入Java程序(Scripting)的做法,以提高程序可读性.维护性和方便性 JSTL的版本号: JSTL的主要版本号是1.0.1.1和1.2(差别不大) 1.0版本号EL表达式还没有纳入官方规范 1.1和1.2版本号EL表达式已经纳入了官方规范 JSTL1.1 下载对应的jar包

带你深入理解STL之迭代器和Traits技法

在开始讲迭代器之前,先列举几个例子,由浅入深的来理解一下为什么要设计迭代器. //对于int类的求和函数 int sum(int *a , int n) { int sum = 0 ; for (int i = 0 ; i < n ; i++) { sum += *a++; } return sum; } //对于listNode类的求和函数 struct ListNode { int val; ListNode * next; }; int sum(ListNode * head) { int

理解javascript中的回调函数(callback)【转】

在JavaScrip中,function是内置的类对象,也就是说它是一种类型的对象,可以和其它String.Array.Number.Object类的对象一样用于内置对象的管理.因为function实际上是一种对象,它可以"存储在变量中,通过参数传递给(别一个)函数(function),在函数内部创建,从函数中返回结果值". 因为function是内置对象,我们可以将它作为参数传递给另一个函数,延迟到函数中执行,甚至执行后将它返回.这是在JavaScript中使用回调函数的精髓.本篇文