FPGA的FIR抽取滤波器设计

摘 要:本文介绍了FIR抽取滤波器的工作原理,重点阐述了用XC2V1000实现FIR抽取滤波器的方法,并给出了仿真波形和设计特点。

关键词:FIR抽取滤波器;流水线操作;FPGA

  用FPGA实现抽取滤波器比较复杂,主要是因为在FPGA中缺乏实现乘法运算的有效结构,现在,FPGA中集成了硬件乘法器,使FPGA在数字信号处理方面有了长足的进步。本文介绍了一种采用Xilinx公司的XC2V1000实现FIR抽取滤波器的设计方法。

具体实现

结构设计

基于抽取滤波器的工作原理,本文采用XC2V1000实现了一个抽取率为2、具有线性相位的3阶FIR抽取滤波器,利用原理图和VHDL共同完成源文件设计。图1是抽取滤波器的顶层原理图。其中,clock是工作时钟,reset是复位信号,enable是输入数据有效信号,data_in(17:0)是输入数据,data_out(17:0)是输出数据,valid是输出数据有效信号。adder18是加法器模块,mult18是乘法器模块,acc36是累加器模块,signal_36to18是数据截位器模块,fir_controller是控制器模块。控制器定时向加法器、乘法器和累加器发送数据或控制信号,实现流水线操作。

图1  抽取滤波器顶层原理图

控制器

控制器是抽取滤波器的核心模块,有两个功能:一是接收输入数据,二是向其它模块发送数据和控制信号。它根据加法器、乘法器和累加器的时序特性,有规律地向加法器发送抽头数据,向乘法器发送系数,向累加器发送控制信号,让加法器、乘法器和累加器在每个时钟周期都完成指定的任务,从而实现流水线操作。控制器用VHDL语言描述,用寄存器存放抽头和系数。  加法器  

加法器的输入和输出都是18 bit,用VHDL语言描述实现。它有两个工作时钟的延迟,在输入数据准备好的情况下,第一个时钟得出相加结果,第二个时钟把相加结果锁存输出。

乘法器

乘法器为18 bit输入,36bit输出,用库元件MULT18X18S和36 bit锁存器实现。MULT18X18S是XC2V1000自带的18×18bit硬件乘法器,单个时钟就可完成乘法运算。36 bit锁存器工作于时钟的上升沿,用VHDL语言描述。乘法器(mult18)也有两个工作时钟的延时,在输入数据准备好的情况下,第一个时钟得出相乘结果,第二个时钟把相乘结果锁存输出。加法器和乘法器采用锁存输出的结构,虽然增加了一个工作时钟的延迟,但有利于抽取滤波器稳定的工作,提高可靠性。  

累加器  

36 bit累加器用于累加乘法器的输出,得出滤波结果。它有一个控制端口clr,当clr为高电平时,输出前一轮累加结果,并初始化,开始新一轮累加;当clr为低电平时,进行累加运算。累加器用VHDL语言描述。  

数据截位器  

数据截位器用VHDL语言描述,用于把累加器的36bit输出进行取舍处理,一般截掉数据低位部分,保留数据高位。为了对抽取滤波器进行功能仿真,这里截掉数据高18bit,保留数据低18bit。

工作过程及功能仿真

下面以抽取滤波器完成一次抽取滤波的全过程为例,说明抽取滤波器的工作过程。

假设时钟1、时钟2、时钟3和时钟4控制器已接收了数据x(n-3)、x(n-2)、x(n-1)和x(n),那么:

时钟5:控制器向加法器发送数据x(n)和x(n-3);

时钟6:加法器进行x(n)+x(n-3)运算;控制器向加法器发送数据x(n-1)和x(n-2);

时钟7:加法器进行x(n-1)+x(n-2)运算,输出x(n)+x(n-3)运算结果。控制器向乘法器发送系数h(0);

时钟8:加法器输出x(n-1)+x(n-2)运算结果,乘法器进行h(0)[ x(n)+x(n-3)]运算,控制器向乘法器发送系数h(1);

时钟9:乘法器进行h(1)[ x(n-1)+x(n-2)]运算,输出h(0)[ x(n)+x(n-3)]运算结果。控制器向累加器发送控制信号(clr为高电平);

时钟10:乘法器输出h(1)[ x(n-1)+x(n-2)]运算结果。累加器初始化,开始累加操作。控制器向累加器发送控制信号(clr为低电平);

时钟11:累加器进行累加运算:h(0)[ x(n)+x(n-3)]+ h(1)[x(n-1)+x(n-2)]。控制器向累加器发送控制信号(clr为高电平),控制器输出滤波数据有效信号(valid为高电平);

时钟12:累加器输出h(0)[ x(n)+x(n-3)]+ h(1)[x(n-1)+x(n-2)] 累加结果,并初始化,开始新一轮累加操作。控制器输出滤波数据无效信号(valid为低电平)。  

以上就是抽取滤波器完成一次抽取滤波的全过程。可见,从数据x(n)输入到滤波结果y(n) 输出需要8个工作时钟。如果控制器不停地向乘法器和加法器发送抽头、系数和控制信号,就会形成流水线操作,那么每过两个时钟,抽取滤波器就会输出一个滤波结果。

两点注意事项

(1)两个n位二进制数相加,其和至少需要n+1位二进制数才能正确表示。本设计中的加法器输入/输出都是18bit,为了防止加法器溢出,应确保18bit输入数据x(n)的最高两位相同(都是符号位)。

(2)为了实现抽取滤波器的多级串联结构,应统一输入数据有效信号enable和输出数据有效信号valid的时序要求。本设计规定控制器在累加器输出滤波结果后的下一个时钟送出滤波结果有效信号,时宽为一个工作时钟周期。  

设计特点  

采用此设计结构实现抽取滤波器有以下三个特点:  

(1)节省片内资源,提高资源使用效率。由于利用IP核生成的滤波器往往不能针对实际情况合理的利用片内资源,造成资源浪费。本设计采用了流水线结构,所有功能模块
都满负荷工作,没有空闲等待时钟,从而节省了片内资源,提高了资源利用率。  

(2)可以实现抽取滤波器多级结构。针对抽取滤波器的输出特性,可以采取相同的设计方法,再设计一级抽取滤波器,对前一级输出的数据再次抽取滤波,从而实现多级抽
取滤波器结构。  

(3)设计灵活,扩展性强。用寄存器存放抽头和系数适用于滤波器阶数较少的情况,如果需要用上百阶的抽取滤波,最好用XC2V1000片内RAM存放抽头和系数,这时只要
稍微改动控制器的逻辑设计即可实现。在此基础上,还可实现可编程抽取滤波器。

结语

本文以实现抽取率为2、具有线性相位的3阶FIR抽取滤波器为例,介绍了一种用Xilinx公司的XC2V1000实现FIR抽取滤波器的设计方法。用该方法设计出的抽取滤波器灵活性强,资源利用率高,能广泛应用于数字接收领域。

时间: 2024-11-19 21:07:30

FPGA的FIR抽取滤波器设计的相关文章

VIVADO FIR滤波器设计与仿真(二)

VIVADO FIR滤波器设计与仿真(二) 在VIVADO FIR滤波器设计与仿真(一)中产生了两路正弦信号,频率分别为4MHz和5MHz,今天要进行FIR滤波器设计,在进行滤波器设计之前,需要对滤波器的参数进行设置,需要借助MATLAB软件或者Filter Solutions软件,这次使用Filter Solutions来进行参数设定. 关于Filter Solutions软件的使用,这里有一篇博客比较详细的介绍了它的用法,可以作为参考: Filter Solutions之滤波器设计 滤波器参

FIR滤波器设计

FIR滤波器的优越性: 相位相应为严格的线性,不存在延迟失真,只有固定的时间延迟: 由于不存在稳定性问题,设计相对简单: 只包含实数算法,不涉及复数算法,不需要递推运算,长度为M,阶数为M-1,计算值约为M/2. 关于FIR滤波器的幅频特性和相频特性.在人们不关心相位时,可以让幅频特性常为正,原来为负的部分只需相位加上pi来补偿. 但当相位很重要,不允许随便增减时,幅频特性就必须区分正负.我们这里称为符幅特性. 符幅特性负值部分向上反褶就和我们平时看到的幅频特性一样,还是满足对称性的. 4类FI

基于Matlab中FDATool工具箱的滤波器设计及相关文件的生成

一.摘要 除了采用编程的方法实现滤波器之外,Mat l ab中自带工具箱FDATool 也能很方便快速的实现滤波器的设计.另外FPGA.DS P等实现数字滤波器算法时,经常要用到滤波器系数,采用FDATool 工具箱也能快速的得到滤波器系数.二.实验平台 Matlab7.1三.实现步骤3.1 滤波器指标若需要设计一个16阶的FIR滤波器(h(0)=0),给定的参数如下:(1) 低通滤波器(2) 采样频率Fs 为48kHz ,滤波器Fc为10.8kHz(3) 输入序列位宽为9位(最高位为符号位)在

滤波器设计

来源:http://www.360doc.com/content/17/0518/21/1832721_655109467.shtml 滤波器设计概要 在信号系统领域,基于傅里叶变换的谱分析和滤波器设计是两个最基本的问题.在模拟系统中,常常用电子元件逼近所需的传递函数,而在数字系统中,则是用差分方程法去逼近所需传递函数.在硬件实现上,主要是用FPGA中的若干和积门来完成. 3.FIR滤波器设计 FIR滤波器很简单,它实际上是一个全零点模型(MA滑动平均模型),滤波器系数只包含滑动平均的B,而自回

Python在信号与系统中的应用(1)——Hilbert变换,Hilbert在单边带包络检波的应用,FIR_LPF滤波器设计,还有逼格高高的FM(PM)调制

多谢董老师,董老师是个好老师! 心情久久不能平静,主要是高频这门课的分析方法实在是让我难以理解,公式也背不过,还是放放吧. 最近厌恶了Matlab臃肿的体积和频繁的读写对我的Mac的损害,所以学习了一下Python这一轻量级的脚本,发现"Python自诞生那天就跟科学计算分不开"这个事实.无聊,写写心得. 配置环境什么的还是弄了几个晚上的.在Mac下用PyCharm还是很好滴,装上NumPy,SciPy等等一众免费的,很不错的Python包,就可以灰了! 1.Hilbert变换及其在单

matlab 与 modelsim 联调 cic抽取滤波器

注:本设计的参数为:D=2,R=5,N=3:时钟频率为50mhz,输入信号为有符号8位,根据公式bmax=bin+N*log(2,R*D):可以得到bmax=18: 1,cic抽取滤波器原理 网上资料一大堆,不说了.重点在于传递函数,以及各个部分的结构. 2,simulink仿真 模型图 频谱仪显示结果 3,cic滤波器verilog 代码 module cic_dec(clk,rst_n,datain,dataout);input clk,rst_n;input [7:0] datain;ou

例说信号处理与滤波器设计

许多公式在转换时成了乱码,相应的word版本请点这里 目录 数字时代    2 数字信号处理的应用    3 频率——信号的指纹    5 卷积可以不卷    8 向量运算的启示    11 滤波器设计征程    16 最后一击——滤波的实现方法    22 纵览全局    27 数字时代 信号处理是对原始信号进行改变,以提取有用信息的过程,它是对信号进行变换.滤波.分析.综合等处理过程的统称.数字信号处理是将信号以数字方式表示并处理的理论和技术:模拟信号处理是指用模拟系统对模拟信号进行处理的方

基于MATLAB的IIR滤波器设计与实现

基于MATLAB的IIR滤波器设计与实现 IIR滤波器的设计主要有经典设计法.直接设计法和最大平滑滤波器设计法三种方法. 1.经典设计法是基于模拟滤波器的变换原理,首先根据滤波器的技术指标设计出相应的模拟滤波器,然后再离散化为满足给定技术指标的数字滤波器.对应的工具函数由完全设计函数——butter.cheby1.cheby2.ellip.besself:阶数估计函数——buttord.cheb1ord.cheb2ord.ellipord:低通模拟原型滤波器函数——buttap.cheb1ap.

Xilinx FPGA控制器的Everspin STT-DDR4设计指南

自旋转移扭矩磁阻随机存取存储器(STT-MRAM)是一种持久性存储技术,可利用各种工业标准接口提供了性能,持久性和耐用性. Everspin推出了STT-MRAM产品,该产品利用称为JE-DDR4的JEDEC标准DDR4接口的变体,它包含了对完整系统支持所需的独特功能.本文将帮助工程师了解Xilinx FPGA控制器的Everspin STT-DDR4设计指南 2.启用ST-DDR4为了使设计人员能够快速集成ST-DDR4支持,该过程从Xilinx Vivado开发环境中生成的现有8Gb DDR