最短路径算法——迪杰斯特拉算法(Dijkstra)

图结构中应用的最多的就是最短路径的查找了,关于最短路径查找的算法主要有两种:迪杰斯特拉算法(Dijkstra)和Floyd算法。

其中迪杰斯特拉算法(Dijkstra)实现如下:

原理就是不断寻找当前的最优解:

void main()
{
	int V[Max][Max]={0,8,32,Infinity,Infinity,
		12,0,16,15,Infinity,
		Infinity,29,0,Infinity,13,
		Infinity,21,Infinity,0,7,
		Infinity,Infinity,27,19,0
	};
	bool sign[Max]={false};
	int D[Max];
	for(int i=0;i<Max;i++)
	{
		D[i]=V[0][i];
	}
	int poineer[Max]={0};

	sign[0]=true;
	int min=0;int k=0;
	for(int i=1;i<Max;i++)
	{
		min=Infinity;
		for(int j=0;j<Max;j++)
		{
			if(!sign[j] && D[j]<min)
			{
				min=D[j];
				k=j;
			}
		}
		sign[k]=true;

		for(int j=0;j<Max;j++)
		{
			if(!sign[j] && min+V[k][j]<D[j])
			{
				poineer[j]=k;
				D[j]=min+V[k][j];
			}
		}
	}
	for(int i=0;i<Max;i++)
	{
		cout<<D[i]<<" ";
	}
	cout<<endl;
	for(int i=0;i<Max;i++)
	{
		cout<<poineer[i]<<" ";
	}

}
时间: 2024-12-25 21:07:42

最短路径算法——迪杰斯特拉算法(Dijkstra)的相关文章

最短路径之迪杰斯特拉(Dijkstra)算法

对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法.本文先来讲第一种,从某个源点到其余各顶点的最短路径问题. 这是一个按路径长度递增的次序产生最短路径的算法,它的大致思路是这样的. 初始时,S中仅含有源.设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度.D

算法-迪杰斯特拉算法(dijkstra)-最短路径

迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想: 设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中

最短路径之迪杰斯特拉算法(Dijkstra)

1.迪杰斯特拉(dijkstra)算法简介 Dijkstra算法是由E.W.Dijkstra于1959年提出,又叫迪杰斯特拉算法,它应用了贪心算法模式, 是目前公认的最好的求解最短路径的方法.算法解决的是有向图中单个源点到其他顶点的最短 路径问题,其主要特点是每次迭代时选择的下一个顶点是标记点之外距离源点最近的顶点.但 由于dijkstra算法主要计算从源点到其他所有点的最短路径,所以算法的效率较低. 2.dijkstra算法基本过程 假设路网中每一个节点都有标号 是从出发点s到点t的最短路径长

最短路径算法——迪杰斯特拉(Dijkstra)

算法思想 设G=(V,E)是一个带权有向图 把图中顶点集合V分成两组 第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了) 第二组为其余未确定最短路径的顶点集合(用U表示) 按最短路径长度的递增次序依次把第二组的顶点加入S中 在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度 此外,每个顶点对应一个距离,S中的顶点的距离就是从源点v到此顶点的最短

图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶

数据结构之最短路径(1) [迪杰斯特拉算法]

迪杰斯特拉算法介绍: 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想: 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

最短路径(迪杰斯特拉算法)

假定条件和上一篇相同... 其实算法思路和上一篇也相同,均为贪心算法... /* * author: buer * github: buer0.github.com */ #include <stdio.h> #include <stdlib.h> #define MAXSIZE 10 typedef struct Graph { int table[MAXSIZE][MAXSIZE]; int num; }Graph; void createTable(Graph *graph)

算法--迪杰斯特拉算法 Dijkstra

https: //www.bilibili.com/video/av47427754?from=search&seid=10869921304007190819 import java.util.*; public class djstl { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); // n个点 m条边 x为开始点 如1到6 1为开始点