Hive 桶的分区

(一)、桶的概念:
对于每一个表(table)或者分区, Hive可以进一步组织成桶(没有分区能分桶吗?),
也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用
对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)、获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用
这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用
Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个
相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可
以,可以大大较少JOIN的数据量。
(2)、使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,
如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

(3)、强制多个 reduce 进行输出:
插入数据前需设置,不设置将会只有一个文件:
set hive.enforce.bucketing = true
要向分桶表中填充数据,需要将 hive.enforce.bucketing 属性设置为 true。
这 样,Hive 就知道用表定义中声明的数量来创建桶。然后使用 INSERT 命令即可。
需要注意的是: clustered by和sorted by不会影响数据的导入,这意味着,用户必须自己负责数据如何如何导入,包括数据的分桶和排序。
‘set hive.enforce.bucketing = true‘ 可以自动控制上一轮reduce的数量从而适配bucket的个数,
当然,用户也可以自主设置mapred.reduce.tasks去适配bucket个数,推荐使用‘set hive.enforce.bucketing = true‘

二、案例操作
1、以用户ID作为分桶依据,将用户数据分4个桶存放
创建普通表:
create table if not exists u_users(
uid int,
uname string,
uage int
)
row format delimited fields terminated by‘,‘;

vi u_users.txt
1,xiaoA,12
2,xiaoB,10
3,xiaoC,12
4,xiaoD,17
5,xiaoE,12
6,xiaoF,16
7,xiaoG,15
8,xiaoH,12
9,xiaoW,12
10,xiaoT,12
11,xiaoL,18

load data local inpath ‘/opt/data/u_users.txt‘ into table u_users;

创建分桶表(用户ID作为分桶依据):
create table if not exists bk_users(
uid int,
uname string,
uage int
)
clustered by(uid) into 4 buckets
row format delimited fields terminated by‘,‘;

说明:
1.clustered by(uid) into 4 buckets 在row format delimited fields terminated by‘,‘前面,顺序不能调
2.clustered by(uid) into 4 buckets 是以表的uid作为分桶依据,然后将数据分为4个桶操作。

强制多个 reduce 进行输出桶文件
set hive.enforce.bucketing = true

加载数据到分桶表:
注意:对分桶表数据的导入只能以结果集的方式添加
insert into table bk_users select * from u_users;

查看分桶表目录下的桶文件:
hive> dfs -ls hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users;
Found 4 items
-rwxr-xr-x 3 root supergroup 22 2017-04-24 14:49 hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000000_0
-rwxr-xr-x 3 root supergroup 33 2017-04-24 14:49 hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000001_0
-rwxr-xr-x 3 root supergroup 34 2017-04-24 14:49 hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000002_0
-rwxr-xr-x 3 root supergroup 34 2017-04-24 14:49 hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000003_0

hive> dfs -cat hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000000_0;
8,xiaoH,12
4,xiaoD,17
hive> dfs -cat hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000001_0;
9,xiaoW,12
5,xiaoE,12
1,xiaoA,12
hive> dfs -cat hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000002_0;
10,xiaoT,12
6,xiaoF,16
2,xiaoB,10
hive> dfs -cat hdfs://Hadoop001:9000/user/hive/warehouse/db_1608c.db/bk_users/000003_0;
11,xiaoL,18
7,xiaoG,15
3,xiaoC,12

分桶表的查询:
select * from bk_users;

tablesample是桶抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
select * from bk_users TABLESAMPLE(BUCKET x OUT OF y);

y尽可能是table总bucket数的倍数或者因子。

y必须要大于x,否则报错。
hive根据y的大小,决定抽样的比例;

clustered by(id) into 16 buckets;
例如,table总共分了16桶,当y=8时,抽取(16/8=)2个bucket的数据,
当y=32时,抽取(16/32=)1/2个bucket的数据。
x表示从哪个bucket开始抽取。

clustered by(id) into 32 buckets;
例如,table总bucket数为32,tablesample(bucket 3 out of 16),
表示总共抽取(32/16=)2个bucket的数据,
分别为第3个bucket和第(3+16=)19个bucket的数据。

bk_users分桶结构:clustered by(uid) into 4 buckets
#从bk_users分桶表抽出一桶数据:
x=2,y=4
select * from bk_users TABLESAMPLE(BUCKET 2 OUT OF 4);

#从bk_users分桶表抽出二桶数据:
x=2,y=2
select * from bk_users TABLESAMPLE(BUCKET 2 OUT OF 2);

#从bk_users分桶表抽出四桶数据:
x=1,y=1
select * from bk_users TABLESAMPLE(BUCKET 1 OUT OF 1);

#从bk_users分桶表抽出半桶数据:
x=1,y=8
select * from bk_users TABLESAMPLE(BUCKET 1 OUT OF 8);

=================抽样查询======================
#随机从某表中取5条数据:
select * from u_users order by rand() limit 5;

#数据块取样 (TABLESAMPLE (n PERCENT))抽取表大小的n%
select * from u_users TABLESAMPLE (10 PERCENT);

#指定数据大小取样(TABLESAMPLE (nM)) M为MB单位
select * from u_users TABLESAMPLE (10M);

#指定抽取条数(TABLESAMPLE (n ROWS))
select * from u_users TABLESAMPLE (5 ROWS);

************分区+分桶+混合方式分区******************************
案例2:按国家、城市分桶,以f1字段作为分桶依据
create external table if not exists tb_part_bk_users(
f1 string,
f2 string,
f3 string,
contry string,
city string
)
row format delimited fields terminated by‘\t‘;

load data local inpath ‘/opt/data/par_buc.txt‘ into table tb_part_bk_users;

创建分区+分桶表:
create external table if not exists part_bk_users(
f1 string,
f2 string,
f3 string
)
partitioned by(contry string,city string)
clustered by(f1) into 5 buckets
row format delimited fields terminated by‘\t‘;

说明:
1.partitioned by(contry string,city string)
clustered by(f1) into 5 buckets
先写分区操作、在设置分桶操作

混合方式将数据添加到分区分桶表:
1.打开动态分区设置、设置动态分区模式为非严格模式
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;

2.强制多个 reduce 进行输出桶文件
set hive.enforce.bucketing = true

3.只能以结果集的方式添加数据到分桶表
insert into table part_bk_users partition(contry=‘CA‘,city)
select f1,f2,f3,city from tb_part_bk_users where contry=‘CA‘;

insert into table part_bk_users partition(contry=‘US‘,city)
select f1,f2,f3,city from tb_part_bk_users where contry=‘US‘;

时间: 2024-12-05 04:44:13

Hive 桶的分区的相关文章

Hive表的分区与分桶

1.Hive分区表 Hive使用select语句进行查询的时候一般会扫描整个表内容,会消耗很多时间做没必要的工作.Hive可以在创建表的时候指定分区空间,这样在做查询的时候就可以很好的提高查询的效率. 创建分区表的语法: [java] view plain copy create table tablename( name string )partitioned by(key,type...); 示例 [java] view plain copy drop table if exists emp

HIVE—索引、分区和分桶的区别

一.索引 简介 Hive支持索引,但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键. Hive索引可以建立在表中的某些列上,以提升一些操作的效率,例如减少MapReduce任务中需要读取的数据块的数量. 为什么要创建索引? Hive的索引目的是提高Hive表指定列的查询速度.没有索引时,类似'WHERE tab1.col1 = 10' 的查询,Hive会加载整张表或分区,然后处理所有的rows,但是如果在字段col1上面存在索引时,那么只会加载和处理文件的一部分

分析Hive表和分区的统计信息(Statistics)

类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中. 表和分区的统计信息主要包括:行数.文件数.原始数据大小.所占存储大小.最后一次操作时间等: 新表的统计信息 对于一个新创建的表,默认情况下,如果通过INSERT OVERWRITE的方式插入数据,那么Hive会自动将该表或分区的统计信息更新到元数据. 有一个参数来控制是否自动统计,hive.stats.autogather,默认为true. 举例来说: 先创

Hive里的分区和分桶再谈

 分桶是细粒度的,分桶是不同的文件. 分区是粗粒度的,即相当于,表下建立文件夹.分区是不同的文件夹. 桶在对指定列进行哈希计算时,会根据哈希值切分数据,使每个桶对应一个文件. 里面的id是哈希值,分过来的. 分桶,一般用作数据倾斜和数据抽样方面.由此,可看出是细粒度. Hive 中创建分区表没有什么复杂的分区类型(范围分区.列表分区.hash 分区,混合分区等).分区列也不是表中的一个实际的字段,而是一个或者多个伪列.意思是说,在表的数据文件中实际并不保存分区列的信息与数据. 注意:普通表(外部

Hive桶表

桶(bucket)是指将表或分区中指定列的值为key进行hash,hash到指定的桶中,这样可以支持高效采样工作. 抽样(sampling)可以在全体数据上进行采样,这样效率自然就低,它还是要去访问所有数据.而如果一个表已经对某一列制作了bucket,就可以采样所有桶中指定序号的某个桶,这就减少了访问量. 针对桶的操作,总共有四步: 1).开启桶的服务 Hive > set hive.enforce.buketing=true; 2).创建桶表 首先,我们来看如何告诉Hive—个表应该被划分成桶

hive里的分区

为了对表进行合理的管理以及提高查询效率,Hive可以将表组织成"分区". 分区是一种根据"分区列"(partition column)的值对表进行粗略划分的机制.Hive中的每个分区对应数据库中相应分区列的一个索引,每个分区对应着表下的一个目录,在HDFS上的表现形式与表在HDFS上的表现形式相同,都是以子目录的形式存在. 一个表可以在多个维度上进行分区,并且分区可以嵌套使用.建分区需要在创建表时通过PARTITIONED BY子句指定,例如: CREATE TAB

Hive的静态分区和动态分区

作者:Syn良子 出处:http://www.cnblogs.com/cssdongl/p/6831884.html 转载请注明出处 虽然之前已经用过很多次hive的分区表,但是还是找时间快速回顾总结一下加深理解. 举个栗子,基本需求就是Hive有一张非常详细的原子数据表original_device_open,而且还在不断随着时间增长,那么我需要给它进行分区,为什么要分区?因为我想缩小查询范围,提高速度和性能. 分区其实是物理上对hdfs不同目录进行数据的load操作,0.7之后的版本都会自动

Hive 桶表

桶表 1)桶是更为细粒度的数据范围划分,它能使一些特定的查询效率更高 2)保存数据时,取分桶字段的哈希值,跟分桶数取余,然后将数据放到不同的桶(文件)里. 1.定义: create table b1(id int, name string) clustered by (id) into 4 buckets; 2.加载数据: 1)使用load data 来加载数据,可以加载成功,也能查询到,但是没有分桶. 2)insert into b1 select .. ,调用mapreduce任务,对分桶字

Hive管理表分区的创建,数据导入,分区的删除操作

Hive分区和传统数据库的分区的异同: 分区技术是处理大型数据集经常用到的方法.在Oracle中,分区表中的每个分区是一个独立的segment段对象,有多少个分区,就存在多少个相应的数据库对象.而在Postgresql中分区表其实相当于分别建立了很多小表,其实和Oracle是异曲同工罢了. 在HIVE中的管理表其实就是在数据库目录下的一个和表名称一样的目录,数据文件都存放在该目录下,如果在Hive中查询一张表数据,那就需要遍历该目录下的所有数据文件,如果表的数据非常庞大,那查询性能会很不好. 管