CVPR 2011 Global contrast based salient region detection

Two salient region detection methods are proposed in this paper: HC AND RC

HC: Histogram based contrast

1. Primary method

It is simply to calculate the saliency of each color in the input image, where each pixel‘s saliency is defined using its color contrast to all other pixels in the image in L*a*b space:

The above equation can be expanded as,

where N is the number of pixels. Therefore we can conclude that the same color have the same saliency, so saliency value for each color is,

n is the number of distinct pixel colors,  is the probability of the corresponding pixel color in the image I.

2. Speeding up strategy

To reduce the number of colors from 256^3 to 12^3 = 1728, and finally to n = 85 colors in this post.

3. Color space smoothing

In order to reduce noisy saliency results caused by such randomness. We replace the saliency value of each color by the weighted average of the saliency values of similar colors. We choose m = n/4 nearsest colors to refine each color.

See the original paper for the detail of this equation.

RC: Region based contrast

1. Segment the input image into regions using [45](see the original paper)

2. Build the color histogram for each region

3. For a region r_k, we compute its saliency value by measuring its color contrast to all other regions in the image,

where  is the number of pixels of region r_i, designed to emphasize color contrast to bigger regions, and

f(c_k,i) is the probability of the i-th color among all n_k colors in the k-th region, used to emphasize the color differences between dominant colors.

4. Spatially weighted region contrast

We now can incorporate spatial information to the above equation to increase the effects of closer regions and decrease the farther ones.

 is the spatial distance between the two regions. controls the strength of spatial information, the bigger value make less effect of the close regions relatively,  is a spatial prior weighting term similar to center bias.

5. Iteratively segmentation using graph-cut.

Dilation and erosion after each iteration. The region inside the eroded region is set to foreground, and the remaining areas are set to unknown.

However, the (f) is not understood...  ≡(▔﹏▔)≡

时间: 2024-10-10 19:33:35

CVPR 2011 Global contrast based salient region detection的相关文章

Global Contrast based Salient Region Detection (Ming ming Cheng)

abstract: Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional c

ACCV2004 Salient Region Detection 论文阅读

Salient Region Detection using Weighted Feature Maps based on the Human Visual Attention Model 主要是根据不同的feature maps的自身特点来计算这个map的权重. Itti等人提出了一个基于human visual attention 的模型,来检测一副图像里的显著区域,分为颜色对比.灰度.方向的特征来分别检测显著性,最后合成一幅显著性图.合成的方法有supervised learning, n

Frequency-tuned Salient Region Detection MATLAB代码出错修改方法

论文:Frequency-tuned Salient Region Detection.CVPR.2009 MATLAB代码出错: Error using makecform>parseWPInput (line 389)Expected input number 2, PROPERTYNAME, to match one of these strings: AdaptedWhitePoint The input, ''whitepoint'', did not match any of the

论文阅读:Frequency-tuned Salient Region Detection

Frequency-tuned Salient Region Detection 作者发现,大部分方法产生的saliency map都不适合image segmentation.因为它们产生的saliency map分辨率低,物体边界不清楚,不能uniformly highlight 显著物体.这是由于向下采样让图像的频谱范围变窄了.为了解决这个问题,作者提出了对算法的五个要求,提出了一个适合做image segmentation 的saliency detector.五个要求是:着重强调最大的

(不断更新)关于显著性检测的调研-Salient Object Detection: A Survey

<Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文章中文献出现的顺序. 一.L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE TPAMI, 1998. 一个用于快速场景分析

论文阅读:DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

因写作需要,再精读一下这篇文章,只说这篇文章提出的方法. 1.摘要部分: 本文提出了一种基于卷积神经网络的深层次显著性网络(deep hierarchical saliency network,DHSNet).该网络以下统一称作"DHSNet".工作流程大体是这样的: 1)首先,DHSNet通过自动学习各种全局结构上的显著性线索(这些线索包括全局对比度.对象性.紧凑性以及它们的优化组合),对输入的图片生成一个粗略的全局上的预测结果: 2)接着, 本文提出了一种分层递归卷积神经网络(hi

目标检测之显著区域检测---国外的一个图像显著区域检测代码及其效果图 saliency region detection

先看几张效果图吧 效果图: 可以直接测试的代码: 头文件: // Saliency.h: interface for the Saliency class.//////////////////////////////////////////////////////////////////////////===========================================================================// Copyright (c) 2009 R

《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解

注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! <基于区域生长的良性和恶性乳腺肿瘤的分类> 摘要 良性肿瘤被认为是导致女性死亡的常见起因之一,对良性肿瘤的早期检测能够提高患者的生存率,因此创造一个能够检测乳腺的可疑组织的系统是非常重要的.本文提出两种自动检测良性和恶性肿瘤的方法,第一种方法中,使用自动的区域生长法进行图形分割,区域生长法的门限值是通过

论文阅读:EGNet: Edge Guidance Network for Salient Object Detection

论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_EGNet_Edge_Guidance_Network_for_Salient_Object_Detection_ICCV_2019_paper.pdf 当前方法的问题 全卷积网络解决了像素标记问题,出现了几种用于显着物体检测的端到端深度架构. 输出显着性图的基本单位从图像区域开始变成每个像素. 一方面,由于每个像素都有其显着性值,结果突出显示了细节. 但是,它忽略了对