费用流(bzoj 3130)

Description

Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。

上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。    对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。

Input

第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
    接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。

Output

第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。

Sample Input

3 2 1
1 2 10
2 3 15

Sample Output

10
10.0000

HINT

【样例说明】

对于Alice,最大流的方案是固定的。两条边的实际流量都为10。

对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用

为:10*0.5+10*0.5=10。可以证明不存在总费用更大的分配方案。

【数据规模和约定】

对于20%的测试数据:所有有向边的最大流量都是1。

对于100%的测试数据:N < = 100,M < = 1000。

对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流

量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。

/*
    可以知道,最后P一定分配在最大的容量的那条边,那么就要使最大容量最小,二分答案。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<cmath>
#define inf 1000000000
#define N 2010
#define eps 0.0001
using namespace std;
int head[N],dis[N],n,m,p,cnt=1,S,T;int q[N];
struct node{int v,pre;double f;}e[N*2];
struct Node{int u,v,w;}road[N*2];

void add(int u,int v,double f){
    e[++cnt].v=v;e[cnt].f=f;e[cnt].pre=head[u];head[u]=cnt;
    e[++cnt].v=u;e[cnt].f=0;e[cnt].pre=head[v];head[v]=cnt;
}
bool bfs(){
    memset(dis,-1,sizeof(dis));
    queue<int>q;q.push(S);dis[S]=0;
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=head[u];i;i=e[i].pre)
            if(e[i].f>0&&dis[e[i].v]==-1){
                dis[e[i].v]=dis[u]+1;
                q.push(e[i].v);
                if(e[i].v==T) return true;
            }
    }
    return dis[T]!=-1;
}
double dinic(int x,double f){
    if(x==T)return f;
    double rest=f;
    for(int i=head[x];i;i=e[i].pre){
        if(e[i].f&&dis[e[i].v]==dis[x]+1){
            double t=dinic(e[i].v,min(rest,e[i].f));
            if(!t) dis[e[i].v]=-1;
            e[i].f-=t;
            e[i^1].f+=t;
            rest-=t;
        }
    }
    return f-rest;
}
double work(double mid){
    memset(head,0,sizeof(head));
    cnt=1;double maxflow=0;
    for(int i=1;i<=m;i++)
        add(road[i].u,road[i].v,min((double)road[i].w,mid));
    while(bfs())
        maxflow+=dinic(S,inf);
    return maxflow;
}
int main(){
    scanf("%d%d%d",&n,&m,&p);
    S=1;T=n;double maxf=0;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&road[i].u,&road[i].v,&road[i].w);
        maxf=max(maxf,(double)road[i].w);
    }
    double maxflow=work(maxf);
    printf("%d\n",(int)maxflow);
    double l=0,r=maxf,ans=r;
    while(r-l>eps){
        double mid=(l+r)/2.0;
        if(fabs(work(mid)-maxflow)<eps)
            r=mid,ans=mid;
        else l=mid;
    }
    printf("%.4lf",ans*(double)p);
    return 0;
}
时间: 2024-11-03 01:20:33

费用流(bzoj 3130)的相关文章

[费用流]Bzoj P2424 订货

Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费.假设仓库容量为S. Input 第1行:n, m, S (0<=n<=50, 0<=m<=10, 0<=S<=10000) 第2行:U1 , U2

BZOJ 3130: [Sdoi2013]费用流 网络流+二分

3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1230  Solved: 598[Submit][Status][Discuss] Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.     最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每条边的实际流量都

BZOJ 2668 交换棋子(费用流)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2668 题意:有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与m[i,j]次交换. 思路: 我们将1看做要移动的数字,将0看做空白.那么若1在始末状态个数不同则无解:如某个格子始末状态均有1则这个格子的1对结果无影响,可以将其都置为0.将每个格子拆为为个点p0,p1,p2: (1)若格子初始为1,则连边:<s,p0,1,0>

BZOJ 3171 循环格(费用流)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3171 题意: 思路:若能构成循环,则每个格子的入度出度 均为1.因此将每个点拆成两个点x1,x2,分别作为出点和入点.出点向周围四个点的入点连边,流1,费用视该格子的字母而定.该格子的字母正好是这个方 向则费用为0否则为1.原点S向每个出点连边,流量1费用0:每个入点向汇点连边,流量1费用0.求最小费用最大流即可. struct node { int u,v,next,cost,cap

BZOJ 2661 连连看(费用流)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2661 题意:给出一个区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x^2-y^2是一个完全平方数z^2,并且y与z互质,那么就可以将x和y一起消除,同时得到x+y点分数.要求就是,消除的数对尽可能多的前提下,得到的分数尽量多. 思路:首先暴力出所有合法的数对(x,y).然后将每个用到的数字拆成两个点,每个数对连一条边.最后的答案除以2即可. struct nod

BZOJ 2879 美食节(费用流-动态加边)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2879 题意:有n道菜,每道菜需要b[i]份,m个厨师,第j个厨师做第i道菜需要时间a[i][j],求做完所有菜,所有人等待的最小总时间. 思路:设所有的菜为sum.一个明显的思路是将每个厨师拆成sum个点.然后sum个菜每个菜向每个厨师的每个点连边,表示该道菜为该厨师第几个做.由于这样数据太大.动态加边.每次增光一次后找到此次增广的厨师,每道菜将其连边. struct node { i

[BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】

题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai (第 i 天需要的毛巾数).从 S 向 i' 连 Ai ,这样这天新增的用过的毛巾就是 Ai 了. 然后 i' 可以连向 (i+1)' ,表示留到下一天再处理,i' 还可以流向 i+p+1 和 i+q+1,表示洗了之后再次使用,这两种边是有费用的. 还有就是新购买毛巾,从 S 向 i 连,费用就是

BZOJ 3876 支线剧情 | 有下界费用流

BZOJ 3876 支线剧情 | 有下界费用流 题意 这题题面搞得我看了半天没看懂--是这样的,原题中的"剧情"指的是边,"剧情点"指的才是点. 题面翻译过来大概是这样: 有一个DAG,每次从1号点出发,走过一条路径,再瞬移回1号点.问:想要遍历所有的边,至少要走多少路程(瞬移回1号点不算路程). 题解 我们用有上下界费用流的模型,建个图: 原图中的每条边,流量范围是\([1, +\infty]\),表示至少走一次,可以走无限次,这条边的费用就是边权. 原图中的每个

bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价.要求最小化总费用减少量和调整次数的比值(至少调整一次). 根据基本套路,二分答案,移项,可以得到每条边的贡献. 设第$i$条边的流量变化量为$m_i$,每次变化花费的平均费用为$w_i$.那么有 $\sum c_id_i - \sum (c_i + m_i)d_i + |m_i|(w_i + mi

BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )

昨晚写的题...补发一下题解... 把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd) S->0(K, 0), S->xi(1, 0)(从i点继续走), 0->yi(1, distance(0->i))(从0出发), xi->yi(1, distance(i->j))(i点走向j点), yi->T(1, 0)(每个点必须经过至少一次), 然后跑最小费用最大流, 费用即为答案. 写完这道题感觉...只是会