机器人学 —— 机器人视觉(估计)

之前说到,机器人视觉的核心是Estimation。求取特征并配准,也是为了Estimation做准备。一旦配准完成,我们就可以从图像中估计机器人的位置,姿态。有了位置,姿态,我们可以把三维重建的东西进行拼接。从视觉信息估计机器人位姿的问题可以分为三个大类:1、场景点在同一平面上。2、场景点在三维空间中。3、两幅点云的配准。 所有问题有一个大前提就是知道相机内部矩阵K.

1、由单应矩阵进行位姿估计

  单应矩阵原指从 R2--R2 的映射关系。但在估计问题中,如果我们能获得这种映射关系,就可以恢复从世界坐标系 x_w 到相机坐标系 x_c 的变换矩阵。此变换矩阵表达了相机相对于x_w 的位姿。

  H = s*K*[r1 r2 t] —— 假设平面上z坐标为0

  s*[r1 r2 t] = k-1*H —— 利用单应矩阵求取旋转与平移向量

  r3 = r1×r2           —— 恢复r3

  s 并不重要,只需要对k-1*h1 进行归一化就能求出来。

  所以,最重要的就是如何求取两个场景中的单应。在前面我提过从消失点来求取单应关系,但是如果不是从长方形 --- 四边形的映射,我们并没有消失点可以找。

  这里要介绍的是一种优雅到爆棚的方法。基于矩阵变换与奇异值分解。JB SHI真不愧大牛。三两句就把这个问题讲的如此简单。

  

  由于H矩阵一共有8个自由度,每一对单应点可以提供两个方程,所以4个单应点就可以唯一确定单应矩阵H。Ax = 0,我们在拟合一章中已经了解过了。x 是最小奇异值对于的V矩阵的列。这里是奇异值分解的第一次出现。

  至此,我们恢复了H矩阵。按照正常的思路就可以解除[r1 r2 t]了。但是,我们的H矩阵是用奇异值分解优化出来的,反解的r1 r2 并不一定满足正交条件,也不一定满足等长条件。所以,我们还要拟合一次RT矩阵。

此次的拟合目标是 min(ROS3 - R‘)。其中R‘ = [k-1H(:,1:2)  x ]. 方法依旧是奇异值分解,R = UV‘. 这是奇异值分解的第二次出现。

2、由射影变换进行位姿估计

  由单应矩阵进行位姿估计的前提是所有点都在一个平面上。而由射影变换进行位姿估计则舍弃了此前提,故上一节是本节的一个特例。此问题学名为PnP问题:perspective-n-point。

  仿造上面的思路,我们依旧可以写成以下形式:

  

  此处射影矩阵一共有12个未知数,9来自旋转矩阵,3来自平移向量。每个点可以提供2个方程。故只要6个场景点,我们就可以用奇异值分解获得P矩阵的值。同样,在获得P矩阵后求T = k-1*P,最后利用奇异值分解修正T.

  不过按照常理,此问题只有6个自由度(3平移,3旋转)。我们使用6个点其实是一种dirty method.

3、由两幅点云进行位姿估计

  对于现在很火的RGBD相机而言,可能这种情况会比较多。从不同角度获得了同一物体的三维图像,如何求取两个位姿之间的变换关系。这个问题有解析解的前提是点能够一一对应上。如果点不能一一对应,那就是ICP算法问题了。

  此问题学名为:Procrustes Problem。来自希腊神话。用中文来比喻的话可以叫穿鞋问题。如何对脚进行旋转平移,最后塞进鞋里。其数学描述如下:通过选择合适的R,T,减小AB之间的差别。

  

  T 其实很好猜,如果两个点团能重合,那么其重心肯定是重合的。所以T代表两个点团重心之间的向量。此问题则有如下变形:

  

  由矩阵分析可知,向量的2范数有以下变形:

  由矩阵分析可知,最后两项实际上是相等的(迹的循环不变性与转置不变性)

  那么优化目标又可以转为:

  

  迹是和奇异值相关的量(相似变换迹不变)

  

  显然,如果Z的迹尽可能大,那么只有一种情况,Z是单位阵,单位阵的迹是旋转矩阵里最大的。所以R的解析解如下:

  

  至此,我们获得了3D--3D位姿估计的解析解!

  

  

  

时间: 2024-10-13 21:51:06

机器人学 —— 机器人视觉(估计)的相关文章

机器人学 —— 机器人视觉(基础)

机器人视觉是一种处理问题的研究手段.经过长时间的发展,机器人视觉在定位,识别,检测等多个方面发展出来各种方法.其以常见的相机作为工具,以图像作为处理媒介,获取环境信息. 1.相机模型 相机是机器人视觉的主要武器,也是机器人视觉和环境进行通信的媒介.相机的数学模型为小孔模型,其核心在于相似三角形的求解.其中有三个值得关注的地方: 1.1 1/f = 1/a + 1/b 焦距等于物距加上像距.此为成像定理,满足此条件时才能成清晰的像. 1.2 X  = x * f/Z 如果连续改变焦距f ,并同时移

机器人学 —— 机器人视觉(Bundle Adjustment)

今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中,已经补完了非线性最小二乘拟合问题.Bundle Adjustment,中文是光束平差法,就是利用非线性最小二乘法来求取相机位姿,三维点坐标.在仅给定相机内部矩阵的条件下,对四周物体进行高精度重建.Bundle Adjustment的优化目标依旧是最小重复投影误差. 与利用non-linear mea

机器人学 —— 机器人视觉(特征)

上回说到机器人视觉的核心任务是estimation,理论框架是射影几何理论.在之前的作业中展现了单应变换的巨大威力.然而,整个estimation 的首要条件是已知像素点坐标,尤其是多幅图中对应点的像素坐标. 单幅图像的处理方法都是大路货了,不赘述.这篇博客想讲讲不变点检测与不变特征.由于机器人在不断运动,所以可能从不同方向对同一物体进行拍摄.而拍摄的距离有远近,角度有titled. 由于射影变换本身的性质,无法保证两幅图中的物体看上去一样.所以我们需要一种特征提取方法(特征点检测),能够保证检

机器人学 —— 机器人感知(Gaussian Model)

机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知.与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测.与计算机视觉不同,机器人视觉所识别的物体往往不需要高精度测量,物体也有明显特征.机器人感知最为典型的应用是对环境的感知 —— SLAM,同步定位与地图构建.如果说机器人视觉解决了where am I的问题,那么Robotic Perception 面对的是Who is it. 1.1D Gaussian 感知要解决的是对环境识别的问题,沿着PGM的

机器人视觉测量与控制

机器人视觉的基本概念 1.摄像机标定(Camera Calibration):对摄像机的内部参数.外部参数进行求取的过程. 2.视觉系统标定(Vision System Calibration):对摄像机和机器人之间关系的确定. 3.手眼系统(Hand-Eye System):又摄像机和机械手构成的机器人视觉系统. 4.Eye-in-Hand:摄像机安装在机械手末端并随机械手一起运动的视觉系统. 5.Eye-to-Hand:摄像机不安装在机械手末端,不随机械手运动的视觉系统. 6.视觉测量(Vi

机器人视觉系统笔记

机器人视觉系统研究 杭电图书馆 科学出版社 总页数:202 唯一QQ:1825587919 唯一WX:ly1825587919 PS:由于阅读效率原因,仅记录关键点 第一章  绪论 第二章 全向视觉系统 1.多摄像机拼接全向视觉系统 ringcam系统   五个摄像头2.鱼眼镜头全向视觉系统 短焦距,超广角镜头3.折反射式全向视觉系统 锥形,椭圆形,双曲线形,抛物线形 水平等比镜面,水平距离成像一样 垂直等比镜面,垂直距离成像一样 角度等比镜面 改进 由内到外 双曲,水平等比,垂直等比 标定方法

机器人学 —— 机器人感知(Location)

终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定map的情况下,需要求取机器人的位姿. 1.Location 的意义 在机器人导航任务中,location 可以告诉机器人目前位置,以方便闭环控制或者轨迹规划.一般情况下,Location 可以通过GPS,WIFI 等方式完成.GPS的定位精度在3.5米左右,WIFI则大于10米.对于机器人.无人汽车而

机器人视觉跟踪与控制研究(一)

研究背景: 机器人视觉,通过图像获得外界信息,用于机器人对环境的感知. 提高机器人智能性.环境适应性.自主行为的重要途径. 近年来机器人领域的研究热点之一. 研究内容: 视觉系统标定 目标分割与图像处理 视觉测量与视觉控制 视觉系统标定 1基于环境信息的自标定 ?利用环境中的正交平行线获得消失点,标定摄像机的内参数 ?利用环境中的正交平行线确定摄像机的姿态 ?提出了利用正交平行线可靠标定摄像机内参数的必要条件 2基于相对运动的自标定 利用机器人末端的至少两次平移运动,标定出立体视觉系统的参数 3

机器人视觉导航工作总结

1.SLAM技术 SLAM 全称 Simultaneous Localization and Mapping,中文名曰「同步定位与地图构建」,主要用于解决机器人在未知环境运动时的定位和地图构建问题.在SLAM理论中,第一个问题称为定位 (Localization),第二个称为建图 (Mapping),第三个则是随后的路径规划.SLAM的实现方式与难度和传感器密切相关.目前实现SLAM的传感器大体分为激光和视觉两大类.相比于图像,激光雷达可直接测量目标与传感器之间的相对位置,使得激光雷达SLAM技