洛谷P2729 饲料调配 Feed Ratios

P2729 饲料调配 Feed Ratios

  • 36通过
  • 103提交
  • 题目提供者该用户不存在
  • 标签USACO
  • 难度普及/提高-

提交  讨论  题解

最新讨论

  • 暂时没有讨论

题目背景

农夫约翰从来只用调配得最好的饲料来喂他的奶牛。饲料用三种原料调配成:大麦,燕麦和小麦。他知道自己的饲料精确的配比,在市场上是买不到这样的饲料的。他只好购买其他三种混合饲料(同样都由三种麦子组成),然后将它们混合,来调配他的完美饲料。

题目描述

给出三组整数,表示 大麦:燕麦:小麦 的比例,找出用这三种饲料调配 x:y:z 的饲料的方法。

例如,给出目标饲料 3:4:5 和三种饲料的比例:

1:2:3 3:7:1 2:1:2 你必须编程找出使这三种饲料用量最少的方案,要是不能用这三种饲料调配目标饲料,输出“NONE”。“用量最少”意味着三种饲料的用量(整数)的和必须最小。

对于上面的例子,你可以用8份饲料1,1份饲料2,和5份饲料3,来得到7份目标饲料:

8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)

表示饲料比例的整数以及目标饲料的都是小于100的非负整数。表示各种饲料的份数的整数,都小于100。一种混合物的比例不会由其他混合物的比例直接相加得到。

输入输出格式

输入格式:

Line 1: 三个用空格分开的整数,表示目标饲料

Line 2..4: 每行包括三个用空格分开的整数,表示农夫约翰买进的饲料的比例

输出格式:

输出文件要包括一行,这一行要么有四个整数,要么是“NONE”。前三个整数表示三种饲料的份数,用这样的配比可以得到目标饲料。第四个整数表示混合三种饲料后得到的目标饲料的份数。

输入输出样例

输入样例#1

3 4 5

1 2 3

3 7 1

2 1 2

输出样例#1

8 1 5 7

说明

题目翻译来自NOCOW。

USACO Training Section 3.2

分析:刚开始没有头绪,但是看到都不超过100,就能想到这是枚举,因为只有三种饲料,那么枚举这三种饲料的数量,然后计算比例,如果发现一个比例和其他的比例不一样,那么就跳过,如果需求为0,则不能直接除,要特殊处理.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

int a[5], b[5], c[5], ta, tb, tc,bi;

int main()
{
    scanf("%d%d%d", &a[0], &b[0], &c[0]);
    for (int i = 1; i <= 3; i++)
        scanf("%d%d%d", &a[i], &b[i], &c[i]);
    for (int i = 0; i < 100; i++)
        for (int j = 0; j < 100; j++)
            for (int k = 0; k < 100; k++)
            {
        ta = i * a[1] + j * a[2] + k * a[3];
        tb = i * b[1] + j * b[2] + k * b[3];
        tc = i * c[1] + j * c[2] + k * c[3];
        bi = 0;
        if (a[0] != 0)
            bi = ta / a[0];
        if (b[0] != 0)
            if (bi == 0)
                bi = tb / b[0];
            else
                if (bi != tb / b[0])
                    continue;
        if (c[0] != 0)
            if (bi == 0)
                bi = tc / c[0];
            else
                if (bi != tc / c[0])
                    continue;
        if (bi != 0 && a[0] * bi == ta && b[0] * bi == tb && c[0] * bi == tc)
        {
            printf("%d %d %d %d\n", i, j, k,bi);
            return 0;
        }
            }
    printf("NONE\n");

    return 0;
}
时间: 2024-10-22 11:51:29

洛谷P2729 饲料调配 Feed Ratios的相关文章

【USACO 3.2.4】饲料调配

[描述] 农夫约翰从来只用调配得最好的饲料来喂他的奶牛.饲料用三种原料调配成:大麦,燕麦和小麦.他知道自己的饲料精确的配比,在市场上是买不到这样的饲料的.他只好购买其他三种混合饲料(同样都由三种麦子组成),然后将它们混合,来调配他的完美饲料. 给出三组整数,表示 大麦:燕麦:小麦 的比例,找出用这三种饲料调配 x:y:z 的饲料的方法. 例如,给出目标饲料 3:4:5 和三种饲料的比例: 1:2:3 3:7:1 2:1:2 你必须编程找出使这三种饲料用量最少的方案,要是不能用这三种饲料调配目标饲

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可

洛谷教主花园dp

洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要种的

洛谷 P2801 教主的魔法 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=2801 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是不超过1000的正整数.教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W.(虽然L=R时并不

洛谷P1466 集合 Subset Sums

洛谷P1466 集合 Subset Sums这题可以看成是背包问题 用空间为 1--n 的物品恰好填充总空间一半的空间 有几种方案 01 背包问题 1.注意因为两个交换一下算同一种方案,所以最终 要 f [ v ] / 2 2.要开 long long 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cmath> 4 #include <cstring> 5 #include <string&g

洛谷P1160 队列安排 链表

洛谷P1160 队列安排   链表 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <cstdlib> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using namespace std

洛谷 P3367 并查集模板

#include<cstdio> using namespace std; int n,m,p; int father[2000001]; int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void unionn(int i,int j) { father[j]=i; } int main() { scanf("%d%d",&n,&m); for

[题解]洛谷比赛『期末考后的休闲比赛2』

[前言] 这场比赛已经结束了有几天,但我各种忙,虽然AK但还是没来得及写题解.(我才不会告诉你我跑去学数据结构了) T1 区间方差 (就不贴题好了) 首先可以推公式(我们可以知道,线段树然而并不能通过初中学过的方差公式在log(L)内求出方差): (s2表示方差,L表示区间长度,xi表示区间的每一项,最后一个x上画了一根线表示这些数据的平均数) 用二项式定理完全平方公式可得: 再次展开: 另外,再代入以下这个 得到了: 然后继续吧.. 然后duang地一声合并同类项,于是我们得到了: 然后可以高