机器学习——分类和回归

1.机器学习的主要任务:
一是将实例数据划分到合适的分类中,即分类问题。 而是是回归, 它主要用于预测数值型数据,典型的回归例子:数据拟合曲线。

2.监督学习和无监督学习:

分类和回归属于监督学习,之所以称之为监督学习,是因为这类算法必须直到预测什么,即目标变量的分类信息

对于无监督学习,此时数据没有类别信息,也不会给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程被成为聚类;将寻找描述数据统计值的过程称之为密度估计。此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或者三维图形更加直观地展示数据信息。

时间: 2024-10-27 06:02:30

机器学习——分类和回归的相关文章

【机器学习笔记之三】CART 分类与回归树

本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification and Regression Trees 分类与回归树,是二叉树,可以用于分类,也可以用于回归问题,最先由 Breiman 等提出. 分类树的输出是样本的类别, 回归树的输出是一个实数. CART算法有两步: 决策树生成和剪枝. 决策树生成:递归地构建二叉决策树的过程,基于训练数据集生成决策树,生成的决策树要尽量大: 自上而下从根开始建立节点,在每个节点处要选择一个最好的属性来分裂,使得

机器学习方法--分类、回归、聚类

原创 2017-07-27 马文辉 MATLAB 作 者 简 介 马文辉,MathWorks中国应用工程师, 南开大学工学博士,在大数据处理与分析领域有多年研究与开发经验:曾就职于Nokia中国研究院,Adobe中国研发中心以及IBM中国. 近年来,全国赛的题目中,多多少少都有些数据,而且数据量总体来说呈不断增加的趋势, 这是由于在科研界和工业界已积累了比较丰富的数据,伴随大数据概念的兴起及机器学习技术的发展, 这些数据需要转化成更有意义的知识或模型. 所以在建模比赛中, 只要数据量还比较大,

CART分类与回归树与GBDT(Gradient Boost Decision Tree)

一.CART分类与回归树 资料转载: http://dataunion.org/5771.html Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍有差异.CAR

机器学习实战-逻辑回归

什么是回归? 假设现在有些数据点,我用直线对这些点进行拟合(该线叫做最佳拟合直线),这个拟合的过程就叫做回归. Logistic回归? 这里,Logistic回归进行分类的主要思想:根据现有数据对分类的边界线建立回归公式,以此边界线进行分类.这里的回归指的是最佳拟合,就是要找到边界线的回归公式的最佳拟合的参数集.训练时使用最优化算法寻找最佳拟合参数. 基于Logistic回归和Sigmoid函数的分类 对于边界线建立的回归函数,能够接受所有的输入然后预测出类别.例如,对于二分类的情况下,上述函数

【机器学习】逻辑回归(Logistic Regression)

注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模

【火炉炼AI】机器学习006-用决策树回归器构建房价评估模型

[火炉炼AI]机器学习006-用决策树回归器构建房价评估模型 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 最近几十年,房价一直是中国老百姓心中永远的痛,有人说,中国房价就像女人的无肩带文胸,一半人在疑惑:是什么支撑了它?另一半人在等待:什么时候掉下去? 而女人,永不可能让它掉下来.就算快掉下来了,提一提还是又上去了..... 虽然我们不能预测中国房价什么时候崩盘,但是却可以用机器学

Spark MLlib中分类和回归算法

Spark MLlib中分类和回归算法: -分类算法: pyspark.mllib.classification -朴素贝叶斯 NaiveBayes -支持向量机(优化:随机梯度下降)SVMWithSGD -逻辑回归  LogisticRegressionWithSGD // 从Spark 2.0开始,官方推荐使用BFGS方式优化LR算法 LogisticRegressionWithBFGS // 针对流式数据实时模型训练算法 StreamingLogisticRegressionWithSGD

随机森林(分类与回归)

随机森林(可用于分类和回归) 随机森林主要应用于回归和分类. 随机森林在运算量没有显著提高的前提下提高了预测精度. 1.简介 随机森林由多棵决策树构成,且森林中的每一棵决策树之间没有关联,模型的最终输出由森林中的每一棵决策树共同决定. 处理分类问题时,对于测试样本,森林中每棵决策树会给出最终类别,最后综合考虑森林内每一棵决策树的输出类别,以 投票方式来决定测试样本的类别:处理回归问题时,则以每棵决策树输出的均值为最终结果. 2.随机森林的随机性 体现在两个方面: Ⅰ:样本的随机性,从训练集中随机

机器学习day14 机器学习实战树回归之CART与模型树

这几天完成了树回归的相关学习,这一部分内容挺多,收获也挺多,刚刚终于完成了全部内容,非常开心. 树回归这一章涉及了CART,CART树称作(classify and regression tree) 分类与回归树,既可以用于分类,也可以用于回归.这正是前面决策树没有说到的内容,在这里补充一下.正好也总结一下我们学的3种决策树. ID3:用信息增益来选择特性进行分类,只能处理分类问题.缺点是往往偏向于特性种类多的特性进行分解,比如特性A有2种选择,特性B有3种选择,混乱度差不多的情况下,ID3会偏