MapReduce之单词计数

最近在看google那篇经典的MapReduce论文,中文版可以参考孟岩推荐的 mapreduce 中文版 中文翻译

论文中提到,MapReduce的编程模型就是:

计算利用一个输入key/value对集,来产生一个输出key/value对集.MapReduce库的用户用两个函数表达这个计算:map和reduce.

用户自定义的map函数,接受一个输入对,然后产生一个中间key/value对集.MapReduce库把所有具有相同中间key I的中间value聚合在一起,然后把它们传递给reduce函数.

用户自定义的reduce函数,接受一个中间key I和相关的一个value集.它合并这些value,形成一个比较小的value集.一般的,每次reduce调用只产生0或1个输出value.通过一个迭代器把中间value提供给用户自定义的reduce函数.这样可以使我们根据内存来控制value列表的大小.

那么研究MapReduce,一般是从hadoop开始,研究编程语言,一般从helloworld开始,那么我们研究hadoop,就先从官方实例wordcount开始。

按照上面提到的编程模型:

用户自定义的map函数,接受一个输入对,然后产生一个中间key/value对集.MapReduce库把所有具有相同中间key I的中间value聚合在一起,然后把它们传递给reduce函数.

那么对于单词计数这个程序来说:

map函数对输入的文本进行分词处理,然后输出(单词, 1)这样的结果,例如“You are a young man”,输出的就是(you, 1), (are, 1) 之类的结果

 

代码如下:

class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        StringTokenizer tokenizer = new StringTokenizer(value.toString());
        while (tokenizer.hasMoreTokens())
        {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}

上面提到map函数的输入也是k-v堆,从模板参数中可以看出。这个map函数的输入K-V类型为 <Object, Text>

而map函数的输出类型为<Text, IntWritable>,而这恰好就是reduce函数的输入类型

 

reduce函数:

用户自定义的reduce函数,接受一个中间key I和相关的一个value集.它合并这些value,形成一个比较小的value集.一般的,每次reduce调用只产生0或1个输出value.通过一个迭代器把中间value提供给用户自定义的reduce函数.这样可以使我们根据内存来控制value列表的大小.

在单词计数中,我们把具有相同key的结果聚合起来:

class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values){
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

reduce函数的第二个参数类型为Iterable<IntWritable>, 这是一堆value的集合,他们具有相同的key,reduce函数的意义就是将这些结果聚合起来。

例如(”hello“, 1)和(”hello“, 1)聚合为(”hello“, 2),后者可能再次和(”hello“, 3) (”hello“, 1),聚合为(”hello“, 7)

可以通过控制values的大小,防止内存溢出,合理使用内存。

reduce函数的结果存储到磁盘上,就是我们最终的结果。

 

完整的代码为:

package com.zhihu;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.StringTokenizer;

/**
 * Created by guochunyang on 15/9/22.
 */
public class WordCount {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "wordcount");
        job.setJarByClass(WordCount.class);

        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path("in"));
        FileOutputFormat.setOutputPath(job, new Path("out"));

        job.waitForCompletion(true);
    }
}

class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        StringTokenizer tokenizer = new StringTokenizer(value.toString());
        while (tokenizer.hasMoreTokens())
        {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}

class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values){
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}
时间: 2024-10-19 04:30:39

MapReduce之单词计数的相关文章

大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

   前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分布式缓存). 一 概述 定义 MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间. 适用范围:数据量大,但是数据种类小可以放入内存. 基

基于 MapReduce 的单词计数(Word Count)的实现

完整代码: // 导入必要的包 import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.conf.Configuration; import org.apache.

大数据学习之MapReduce编程案例一单词计数 10

一:单词计数 1:单词计数总流程图 2:代码实现 1:Map阶段 package it.dawn.YARNPra.wc_hdfs; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapp

Storm实现单词计数

package com.mengyao.storm; import java.io.File;import java.io.IOException;import java.util.Collection;import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import backt

【Hadoop基础教程】5、Hadoop之单词计数

单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为MapReduce版"Hello World",该程序的完整代码可以在Hadoop安装包的src/example目录下找到.单词计数主要完成的功能:统计一系列文本文件中每个单词出现的次数,如下图所示.本blog将通过分析WordCount源码来帮助大家摸清MapReduce程序的基本结构和运行机制. 开发环境 硬件环境:Centos 6.5 服务器4台(一台为Master节点,三台为Slave节点) 软件环境:Jav

Storm实验 -- 单词计数4

在上一次单词计数的基础上做如下改动: 使用 自定义  分组策略,将首字母相同的单词发送给同一个task计数 自定义 CustomStreamGrouping package com.zhch.v4; import backtype.storm.generated.GlobalStreamId; import backtype.storm.grouping.CustomStreamGrouping; import backtype.storm.task.WorkerTopologyContext;

Storm实验 -- 单词计数3

在上一次单词计数的基础上做如下改动: 使用 Direct Grouping 分组策略,将首字母相同的单词发送给同一个task计数 数据源spout package com.zhch.v3; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import b

第一章 flex单词计数程序

学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 %{ int chars = 0; int words = 0; int lines = 0; %} %% [a-zA-Z]+ { words++; chars += strlen(yytext); } \n { chars++; lines++; } . { chars++; } %% main(int a

自然语言处理第二讲:单词计数

自然语言处理:单词计数 这一讲主要内容(Today): 1.语料库及其性质: 2.Zipf 法则: 3.标注语料库例子: 4.分词算法: 一. 语料库及其性质: a) 什么是语料库(Corpora) i. 一个语料库就是一份自然发生的语言文本的载体,以机器可读形式存储: ii. 一种平衡语料库尝试在语言或者其他领域具有代表性: b) 译者注:平行语料库与平衡语料库的特点与区别 i. 平行语料库通常是由双语或多语的对应语料构成,常常是翻译文本构成.例如:Babel English-Chinese