概率论公理

样本空间和事件

sample space:一个实验所有结果的可能的集合。

1.比如抛一枚硬币,其样本空间s={正面,反面}

2.若实验是考察一个晶体管的寿命(小时),那么样本空间是所有大于等于0的实数的集合S={x:0<=x}

可以发现,样空空间可以是有限的,也可以是无限的。

event:样本空间的任意子集叫做event。

如果一个实验的结果包含在事件E中,那么就说事件E发生了。

例如,在1中,另E={正面},则表示事件“抛一枚硬币是正面”

union:样本空间S的任意两个事件E,F,E并F是一个新的事件,他的含义是,如果E和F至少有一个发生,那么E并F发生。

intersection:样本空间S的任意两个事件E,F,E交F是一个新的事件,其含义是,E交F发生,当且仅当E和F同时发送。

需要仔细理解而这的定义,union是蕴含关系,intersection是等价关系,在union中,E并F发生,不能推出E和F至少有一个发生。

可数个事件的并和交

事件之间的关系:无交集,有交集(子集?相等?)

所有定义都是采用集合语言来描述的。

关于交并补的de morgan 定律。

事件概率的朴素定义,及其问题

事件的概率定义为,这个事件发生的次数/总次数 的极限。

事件是样本空间的集合,他独立于实验。一个事件的概率,定义为,在n次实验中,事件发生的次数/n 当n趋于无穷大时候的极限。

问题1:任意事件的概率是否都是某一个实数,即他是否收敛。

S为某个实验的样本空间,E是S的子集,P(E)是一个实数

1)0<=P(E) <=1

2)P(S)=1

3)若事件不相容,满足可加性

此时,我们成P(E)为事件E的概率。

2016.02.25.21.22 记

时间: 2024-10-12 12:11:16

概率论公理的相关文章

《A First Course in Probability》-chaper2-概率论公理

概率论自身有一套很深的理论体系,读过<几何原本>的读者会知道,伟大的欧几里得之所以伟大,是因为它基于几条最基本的公理,推导除了整个欧式几何学的理论体系,同样,在概率论这里,一切的推导都是源于下面的概率论公理. 首先是对概率的定义: 能够看到概率本身的定义就是基于极限的,是理想的. 基于这几条公理,就可以推导一些简单的命题了. 命题3的推广形式其实就是容斥恒等式.

转载--柯尔莫哥洛夫

柯尔莫哥洛夫 柯尔莫哥洛夫,A.H.(Андрей Николаевич Колмогоров)1903年4月25日生于俄国坦波夫(Тамбов):1987年10月20日卒于苏联莫斯科.数学.大气力学. 柯尔莫哥洛夫的父亲卡塔也夫(Николай Матвеевич Катаев)是农艺师兼作家,母亲柯尔莫哥洛娃(Мария Яковлевна Колмогорова)出身贵族.他们并没有办结婚手续,所以柯尔莫哥洛夫从母姓.十月革命后,卡塔也夫主持农业人民委员部教育部门,在1919年A.И.邓尼

概率论02 概率公理-集合

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 概率论早期用于研究赌博中的概率事件.赌徒对于结果的判断基于直觉,但高明的赌徒尝试从理性的角度来理解.然而,赌博中的一些结果似乎有矛盾.比如掷一个骰子,每个数字出现的概率相等,都是1/6.然而,如果有两个骰子,那么出现的2到12这些数字的概率却不相同.概率论这门学科正是为了搞清楚这些矛盾背后的原理. 早期的概率论是一门混合了经验的数学学科,并没有严格的用语.因此,概率论在数学的精密

概率论高速学习03:概率公理补充

原创地址:   http://www.cnblogs.com/Alandre/  (泥沙砖瓦浆木匠),须要转载的,保留下! Thanks "应注意到一个析取命题的对立命题是由该析取命题各部分的对立内容构成的一个合取命题" --奥卡姆的威廉著.<逻辑学论文> Written In The Font I  like maths when i was young,but I need to record them. So I am writing with some demos

概率论学习小结(road map)

在最近学习模式识别和机器学习时经常会用到概率论的知识,索性重新复习一遍概率论的知识.学习概率论最重要的一点不是公式的记忆,而是对公式背后的含义的理解.(其实学习任何一门知识都是如此,但是相比高数等的抽象性来说,概率可能显得更"接地气") 曾经在大学时代数学中学的最差的一门课便是概率论,然而最近的学习中,在几经挣扎之后却渐渐找到了这门课的乐趣,在本科时候学习的那个小小的课本将概率论的趣味完全遮盖住了. 学习概率论首先要明白这门课的意义.概率论顾名思义是研究事件发生的可能性的学科,这里不使

数据挖掘中所需的概率论与数理统计知识

http://blog.csdn.net/v_july_v/article/details/8308762 数据挖掘中所需的概率论与数理统计知识 (关键词:微积分.概率分布.期望.方差.协方差.数理统计简史.大数定律.中心极限定理.正态分布) 导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简史,因为,

概率论基本定理

一.古典概率,几何概率,统计概率相同性质. 二.概率论三公理 三.条件概率 四.乘法定理及推广 五.全概率公式 六.贝叶斯公式 七.独立事件的推论 另注意独立事件和事件互不相容的区分. 八.二项概率公式 九. 泊松逼近 证明:

推荐系统中所需的概率论与数理统计知识

前言 一个月余前,在微博上感慨道,不知日后是否有无机会搞DM,微博上的朋友只看不发的围脖评论道:算法研究领域,那里要的是数学,你可以深入学习数学,将算法普及当兴趣.想想,甚合我意.自此,便从rickjin写的"正态分布的前世今生"开始研习数学. 如之前微博上所说,"今年5月接触DM,循序学习决策树.贝叶斯,SVM.KNN,感数学功底不足,遂补数学,从'正态分布的前后今生'中感到数学史有趣,故买本微积分概念发展史读,在叹服前人伟大的创造之余,感微积分概念模糊,复习高等数学上册,

(二)概率论之随机变量

1. 什么是随机变量? 在(一)中已经介绍 样本空间$\Omega$和基本事件$\omega$,若对任意$\omega$有唯一$X(\omega) \in R$,我们则称$X$为随机变量(取值函数).注意$\{\omega|X(\omega)=x\}\subset \Omega $,一般简写 \[P(\{\omega|X(\omega)=x\})=P(X=x)\] 有时我们不仅要知道$P(X=x)$的值,也需要知道$P(a\leq X \leq b)$和$P(X\leq x)$,$P(X \ge