python-汉诺塔递归实现

摘录自廖雪峰老师教程下的评论,个人备忘,脑细胞已死光

 1 def move(from,to): #将盘子从from移动到to,动画效果需要脑补
 2     print(from,‘->‘,to)
 3
 4 def hanoi(n,src,tmp,dst):#将n个盘子从src搬到dst
 5     if n == 1: #只有一个盘子的情况
 6         move(src,dst)
 7     else: #有一个以上盘子的情况
 8         hanoi(n-1,src,dst,tmp) #将上方的n-1个盘子从src搬到tmp
 9         move(src,dst) #将第n个盘子从src轻松愉快地移动到dst
10         hanoi(n-1,tmp,src,dst) #擦屁股,将tmp上的n-1个盘子搬到dst上
11
12
13 hanoi(3,‘A‘,‘B‘,‘C‘)

期望输出:

1 # 期待输出:
2 # A --> C
3 # A --> B
4 # C --> B
5 # A --> C
6 # B --> A
7 # B --> C
8 # A --> C
9 move(3, ‘A‘, ‘B‘, ‘C‘)
时间: 2024-10-06 23:49:37

python-汉诺塔递归实现的相关文章

数据结构--汉诺塔递归Java实现

1 /*汉诺塔递归 2 * 1.将编号0-N-1个圆盘,从A塔座移动到B上面 3 * 2.将编号N的1个圆盘,从A移动到C上面 4 * 3.最后将B上面的N-1个圆盘移动到C上面 5 * 注意:盘子的编号从上到下1-N 6 * */ 7 public class HannoTower_Recursion { 8 9 public static void main(String[] args) { 10 int nDisk = 3; 11 doTowers(nDisk,'A','B','C');

python - 汉诺塔

#!/usr/bin/env python # 24 - 递归 汉诺塔 # Q1: """ 汉诺塔原型 三个柱子,64块金片 思路: 1. 将x上的63个盘子借助Z移动到Y上 2. 将Y上的63个盘子借助X移动到Z上 问题1: 将x上的63个盘子借助Z移动到Y上.拆解为: 1. 将62个盘子从x移动到Z上 2. 将最底下的第63个盘子移动到y上 3. 将z上的62个盘子移动到Y上 问题2: 将Y上的63个盘子借助X移动到Z上,拆解为: 1. 将62个盘子从y移动到x上 2.

汉诺塔递归

#一日一词# 今天在学习Python的时候,遇到了递归问题,案例呢就是经典的汉诺塔游戏,表示虽然以前就接触过这游戏,解起来也很容易,不过放在编程里,几行的代码可够我手推了一个多小时.╭∩╮(︶︿︶)╭∩╮ 当然也是感受到了搞清楚一个(我认为的)难题的乐趣,心情大好,买条裤子. (表示从晚上一直整理到第二天,电脑没电所以今早发,生日与学习紧密结合)? 首先说下汉诺塔游戏,如下图,需要利用中间的柱子将左边的所有圆盘移动到最右边的柱子上,且和原来的大小上下顺序一致,移动过程中保证大盘永远在小盘下面.

汉诺塔递归解决方法经典分析

一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. 虽然这只是一个传说,但也给我们提出了一个问题,

python汉诺塔

python动画实现: 代码如下: import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.isEmpty()

汉诺塔递归实现

经典问题汉诺塔的实现中,递归实现可以说是代码量最少,并最简单易懂的实现方法了. 假设有三根柱子a,b,c.其中a柱子上有n个金片.我们的目的就是把n个金片借助b,全部移动到c上.这是一个汉诺塔问题. 这个问题可以分解成如下子问题: (1)将n-1个金片从a移动到b.这又是一个汉诺塔问题. (2)上面执行完之后,可以直接将第n个金片移动到c. (3)上面两步执行完之后,将n-1个金片从b移动到c.这又再次是一个汉诺塔问题. 很显然,把上面的步骤翻译成递归形式可以得到如下的程序: 1 #includ

经典汉诺塔递归实现

/*  * 为了将num个盘子从char移动到to,需要先将第num个盘子上面的num-1个盘子移动到temp上,  * 然后将第num个盘子移动到to上,最后将第N-1个盘子从temp移动到to上.这样通过递归  * 就可以实现汉诺塔问题的求解.  */ public static void HanuoTower(int num, char from, char temp, char to){ if(num==1){ System.out.println("从"+from+"

python汉诺塔实现思路

汉诺塔的目标:把A柱子上的N个盘子移动到C柱子 递归的思想就是把这个目标分解成三个子目标 子目标1:将前n-1个盘子从a移动到b上 子目标2:将最底下的最后一个盘子从a移动到c上 子目标3:将b上的n-1个盘子移动到c上 move(n, a, b, c):     n==:         (a++c)         move(n-,a,c,b)//子目标1:将前n-1个盘子从a移动到b上     move(,a,b,c)//子目标2:将最底下的最后一个盘子从a移动到c上     move(n

汉诺塔-递归

有三根柱子A,B,C A柱子上穿着N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小.要将所有圆盘移至C柱子,遵循以下规则: 1. 每次只能移动一个圆盘: 2. 小的上面不能放大的. 拆解问题,N个盘子,把最下面的那个大的看做地面,看成不存在,问题变为N-1汉诺塔问题 把下面两层看做不存在,就是N-2.... 方法就是: 先移动一个盘子(解决1汉诺塔问题) 在此基础上,解决2汉诺塔问题 .... .... 解决N-1汉诺塔问题 最终解决N汉诺塔问题 当然,递归是倒过来的,虽然思维是倒过来的,但实际

Python汉诺塔问题

汉诺塔描述 古代有一座汉诺塔,塔内有3个座A.B.C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示.有一个和尚想把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上.在移动过程中可以利用B座来放盘子. 代码: import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.items) ==