【bzoj1211】 HNOI2004—树的计数

http://www.lydsy.com/JudgeOnline/problem.php?id=1211 (题目链接)

题意:一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。

Solution 
  prufer序列,明明的烦恼简化版。

代码:

// bzoj1211
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
    LL x=0,f=1;char ch=getchar();
    while (ch>‘9‘ || ch<‘0‘) {if (ch==‘-‘) f=-1;ch=getchar();}
    while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}

const int maxn=200;
int d[maxn],a[maxn],np[maxn],n;

void pls(int x,int f) {
    for (int i=2;i<=x;i++)
        if (!np[i]) for (int j=i;j<=x;j*=i) a[i]+=f*x/j;
}
int main() {
    np[1]=1;
    for (int i=2;i<=150;i++)
        if (!np[i]) for (int j=i*2;j<=150;j+=i) np[j]=1;
    scanf("%d",&n);
    int sum=0;
    if (n==1) {
        int x;scanf("%d",&x);
        if (!x) printf("1");
        else printf("0");
        return 0;
    }
    for (int i=1;i<=n;i++) {
        scanf("%d",&d[i]);
        if (!d[i]) {printf("0");return 0;}
        d[i]--;
        sum+=d[i];
        pls(d[i],-1);
    }
    if (sum!=n-2) {printf("0");return 0;}
    LL ans=1;
    pls(sum,1);
    for (int i=2;i<=150;i++)
        for (int j=1;j<=a[i];j++) ans*=(LL)i;
    printf("%lld",ans);
    return 0;
}

  

时间: 2024-11-10 13:41:12

【bzoj1211】 HNOI2004—树的计数的相关文章

【prufer编码】BZOJ1211 [HNOI2004]树的计数

Description 给定一棵树每个节点度的限制为di,求有多少符合限制不同的树. Solution 发现prufer码和度数必然的联系 prufer码一个点出现次数为它的度数-1 我们依然可以把树转成序列进行处理 只是每个元素出现次数受到了限制 于是就是有重复元素的排列问题了 公式很好推 Code 特殊情况判一判 1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #define ll lon

bzoj1211 [HNOI2004]树的计数

Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵. Sample Input 4 2 1

[BZOJ1211][HNOI2004]树的计数(Prufer序列)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那题 说下prufer序列的性质: 1.一个无根树对应一个prufer序列 2.一个n个节点无根树对应的prufer序列长度为n-2 3.prufer序列中某节点出现的次数==这个节点在对应的无根树中度数-1 所以这题求无根树的数量等价于求prufer序列的数量. 注意无解的情况就行了.

BZOJ 1211: [HNOI2004]树的计数( 组合数学 )

知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! --------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; c

BZOJ 1211: [HNOI2004]树的计数 purfer序列

1211: [HNOI2004]树的计数 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵

【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即

bzoj 1211 [HNOI2004]树的计数

[HNOI2004]树的计数 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵. Samp

BZOJ 1211 HNOI2004 树的计数 Prufer序列

题目大意:给定一棵树中所有点的度数,求有多少种可能的树 Prufer序列,具体参考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每个数分解质因数,把质因数的次数相加相减,然后再乘起来 注意此题无解需要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--居然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostrea

【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp