codeforces 598E E. Chocolate Bar(区间dp)

题目链接:

E. Chocolate Bar

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You have a rectangular chocolate bar consisting of n × m single squares. You want to eat exactly k squares, so you may need to break the chocolate bar.

In one move you can break any single rectangular piece of chocolate in two rectangular pieces. You can break only by lines between squares: horizontally or vertically. The cost of breaking is equal to square of the break length.

For example, if you have a chocolate bar consisting of 2 × 3 unit squares then you can break it horizontally and get two 1 × 3 pieces (the cost of such breaking is 32 = 9), or you can break it vertically in two ways and get two pieces: 2 × 1 and 2 × 2 (the cost of such breaking is 22 = 4).

For several given values nm and k find the minimum total cost of breaking. You can eat exactly k squares of chocolate if after all operations of breaking there is a set of rectangular pieces of chocolate with the total size equal to k squares. The remaining n·m - ksquares are not necessarily form a single rectangular piece.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 40910) — the number of values nm and k to process.

Each of the next t lines contains three integers nm and k (1 ≤ n, m ≤ 30, 1 ≤ k ≤ min(n·m, 50)) — the dimensions of the chocolate bar and the number of squares you want to eat respectively.

Output

For each nm and k print the minimum total cost needed to break the chocolate bar, in order to make it possible to eat exactly ksquares.

Examples

input

42 2 12 2 32 2 22 2 4

output

5540

Note

In the first query of the sample one needs to perform two breaks:

  • to split 2 × 2 bar into two pieces of 2 × 1 (cost is 22 = 4),
  • to split the resulting 2 × 1 into two 1 × 1 pieces (cost is 12 = 1).

In the second query of the sample one wants to eat 3 unit squares. One can use exactly the same strategy as in the first query of the sample.

AC代码:

#include <bits/stdc++.h>
using namespace std;
const int inf=0x7f7f7f7f;
int dp[32][32][53];
int n,m,k;
int get_ans()
{
    memset(dp,inf,sizeof(dp));
    for(int i=0;i<=30;i++)
    {
        for(int j=0;j<=30;j++)
        {
            dp[i][j][0]=0;
            dp[0][i][j]=0;
            dp[i][0][j]=0;
        }
    }
    for(int i=1;i<=30;i++)
    {
        for(int j=1;j<=30;j++)
        {
            int x=min(i*j,50);
            if(i*j<=50)dp[i][j][i*j]=0;
            for(int k=1;k<=x;k++)
            {

                for(int v=1;v<=i/2;v++)
                {
                    int num=min(k,v*j);
                    for(int u=0;u<=num;u++)
                    {
                        dp[i][j][k]=min(dp[i][j][k],dp[v][j][u]+dp[i-v][j][k-u]+j*j);
                    }
                }
                for(int v=1;v<=j/2;v++)
                {
                    int num=min(k,v*i);
                    for(int u=0;u<=num;u++)
                    {
                        dp[i][j][k]=min(dp[i][j][k],dp[i][v][u]+dp[i][j-v][k-u]+i*i);
                    }
                }
            }
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    get_ans();
    while(t--)
    {
        scanf("%d%d%d",&n,&m,&k);
        printf("%d\n",dp[n][m][k]);
    }
    return 0;
}
时间: 2024-12-23 00:56:32

codeforces 598E E. Chocolate Bar(区间dp)的相关文章

CodeForces - 1114D Flood Fill (区间dp)

You are given a line of nn colored squares in a row, numbered from 11 to nn from left to right. The ii-th square initially has the color cici. Let's say, that two squares ii and jj belong to the same connected component if ci=cjci=cj, and ci=ckci=ck 

Codeforces 633F The Chocolate Spree 树形dp

The Chocolate Spree 对拍拍了半天才知道哪里写错了.. dp[ i ][ j ][ k ]表示在 i 这棵子树中有 j 条链, 是否有链延伸上来. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #d

CodeForces 598E Chocolate Bar

区间DP预处理. dp[i][j][k]表示大小为i*j的巧克力块,切出k块的最小代价. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const long long INF=9999999999999999; const int maxn=60; long long dp[maxn][maxn][maxn]; int n

Codeforces 509F Progress Monitoring (区间dp 或 记忆化搜索)

F. Progress Monitoring time limit per test 1 second memory limit per test 256 megabytes Programming teacher Dmitry Olegovich is going to propose the following task for one of his tests for students: You are given a tree T with n vertices, specified b

Codeforces 437E The Child and Polygon(区间DP)

题目链接:Codeforces 437E The Child and Polygon 题目大意:给出一个多边形,问说有多少种分割方法,将多边形分割为多个三角形. 解题思路:首先要理解向量叉积的性质,一开始将给出的点转换成顺时针,然后用区间dp计算.dp[i][j]表示从点i到点j可以有dp[i][j]种切割方法.然后点i和点j是否可以做为切割线,要经过判断,即在i和j中选择的话点k的话,点k要在i,j的逆时针方. #include <cstdio> #include <cstring&g

codeforces 149D - Coloring Brackets (区间dp)

题目大意: 给出一组合法的括号. 括号要么不涂颜色,要么就涂上红色或者绿色. 匹配的括号只能有一个有颜色. 两个相邻的括号不能有相同的颜色. 思路分析: 因为是一个合法的括号序列. 所以每个括号与之匹配的位置是一定的. 那么就可以将这个序列分成两个区间. (L - match[L] )  (match[L]+1, R) 用递归先处理小区间,再转移大区间. 因为条件的限制,所以记录区间的同时,还要记录区间端点的颜色. 然后就是一个递归的过程. #include <cstdio> #include

Codeforces Round #538 (Div. 2) D. Flood Fill 【区间dp || LPS (最长回文序列)】

任意门:http://codeforces.com/contest/1114/problem/D D. Flood Fill time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output You are given a line of nn colored squares in a row, numbered from 11 to nn f

Codeforces Round #106 (Div. 2) Coloring Brackets(区间DP)

题意:给你一组括号序列,让你进行染色,对于每个括号,有无色,红色,蓝色三种方案.染色需要满足这样的条件:互相匹配的括号,有且只有一个有颜色,相邻的括号不能颜色相同(可以同为无色),问合法的染色方案数(答案%1e9+7) 分析:根据题意能够看出是区间DP,并且状态转移的时候,依赖于左右两端的颜色,所以我们用dp[i][j][x][y]表示i到j的区间内左端颜色为x,右端颜色为y的方案数. 区间[i,j]可以由两种情况得到,一种是str[i],str[j]匹配,产生新的相匹配的括号,考虑在只有一端染

Timetable CodeForces - 946D (区间dp)

大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天dp即可. #include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #i